Mesangial Injury and Capillary Ballooning Precede Podocyte Damage in Nephrosclerosis

Published:September 20, 2022DOI:


      The development of focal and segmental glomerulosclerosis (FSGS) in consequence of glomerular hypertension due to arterial hypertension is widely considered as a podocyte disease. However, the primary damage is encountered in the mesangium. Mesangial cells, in acute settings, disconnect from their insertions to the glomerular basement membrane (GBM) causing a ballooning of capillaries and severe changes of the folding pattern of the GBM, of the arrangement of the capillaries and thus of the architecture of the tuft. The displacements of capillaries lead to contacts of podocytes to parietal epithelial cells (PECs) initiating the formation of tuft adhesions to Bowman’s capsule (BC), the committed lesion to progress to FSGS. In addition, the displacement of capillaries also causes an abnormal stretching of podocytes resulting in podocyte damage. Thus, the damage of podocytes that starts the sequence to FSGS develops secondarily to the mesangial damage. This sequence was found in two hypertensive rat models of FSGS and in human hypertensive nephrosclerosis.

      Graphical abstract


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • MacKinnon M.
        • Shurraw S.
        • Akbari A.
        • Knoll G.A.
        • Jaffey J.
        • Clark H.D.
        Combination therapy with an angiotensin receptor blocker and an ACE inhibitor in proteinuric renal disease: a systematic review of the efficacy and safety data.
        Am J Kidney Dis. 2006; 48: 8-20
        • Ripley E.
        Complementary effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in slowing the progression of chronic kidney disease.
        Am Heart J. 2009; 157: S7-S16
        • Chen T.K.
        • Knicely D.H.
        • Grams M.E.
        Chronic Kidney Disease Diagnosis and Management: A Review.
        JAMA. 2019; 322: 1294-1304
        • Zhao M.
        • Qu H.
        • Wang R.
        • Yu Y.
        • Chang M.
        • Ma S.
        • Zhang H.
        • Wang Y.
        • Zhang Y.
        Efficacy and safety of dual vs single renin-angiotensin-aldosterone system blockade in chronic kidney disease: An updated meta-analysis of randomized controlled trials.
        Medicine (Baltimore). 2021; 100e26544
        • Kriz W.
        • Mundel P.
        • Elger M.
        The contractile apparatus of podocytes is arranged to counteract GBM expansion.
        Contrib Nephrol. 1994; 107: 1-9
        • Kriz W.
        • Hackenthal E.
        • Nobiling R.
        • Sakai T.
        • Elger M.
        • Hähnel B.
        A role for podocytes to counteract capillary wall distension.
        Kidney Int. 1994; 45: 369-376
        • Reiser J.
        • Mundel P.
        Dual effects of RAS blockade on blood pressure and podocyte function.
        Curr Hypertens Rep. 2007; 9: 403-408
        • Whaley-Connell A.
        • Nistala R.
        • Habibi J.
        • Hayden M.R.
        • Schneider R.I.
        • Johnson M.S.
        • Tilmon R.
        • Rehmer N.
        • Ferrario C.M.
        • Sowers J.R.
        Comparative effect of direct renin inhibition and AT1R blockade on glomerular filtration barrier injury in the transgenic Ren2 rat.
        Am J Physiol Renal Physiol. 2010; 298: F655-F661
        • Marquez E.
        • Riera M.
        • Pascual J.
        • Soler M.J.
        Renin-angiotensin system within the diabetic podocyte.
        Am J Physiol Renal Physiol. 2015; 308: F1-10
        • Suleiman H.Y.
        • Roth R.
        • Jain S.
        • Heuser J.E.
        • Shaw A.S.
        • Miner J.H.
        Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy.
        JCI Insight. 2017; 2
        • Qu C.
        • Roth R.
        • Puapatanakul P.
        • Loitman C.
        • Hammad D.
        • Genin G.
        • Miner J.
        • Suleiman H.
        Three-Dimensional Visualization of the Podocyte Actin Network Using Integrated Membrane Extraction, Electron Microscopy, and Machine Learning.
        J Am Soc Nephrol. 2021;
        • Bersie-Larson L.M.
        • Gyoneva L.
        • Goodman D.J.
        • Dorfman K.D.
        • Segal Y.
        • Barocas V.H.
        Glomerular filtration and podocyte tensional homeostasis: importance of the minor type IV collagen network.
        Biomech Model Mechanobiol. 2020; 19: 2433-2442
        • Janmey P.A.
        • Miller R.T.
        Mechanisms of mechanical signaling in development and disease.
        J Cell Sci. 2011; 124: 9-18
        • Kriz W.
        • Lemley K.V.
        Potential relevance of shear stress for slit diaphragm and podocyte function.
        Kidney Int. 2017; 91: 1283-1286
        • Kriz W.
        • Lemley K.V.
        Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis.
        Pediatr Nephrol. 2017; 32: 405-417
        • Kretzler M.
        • Koeppen-Hagemann I.
        • Kriz W.
        Podocyte damage is a critical step in the development of glomerulosclerosis in the uninephrectomized desoxycorticosterone rat.
        Virchows Arch. 1994; 425: 181-193
        • Kriz W.
        • Hosser H.
        • Hähnel B.
        • Simons J.L.
        • Provoost A.P.
        Development of vascular pole associated glomerulosclerosis in the Fawn-hooded rat.
        J Am Soc Nephrol. 1998; 9: 381-396
        • Kriz W.
        • Hähnel B.
        • Rösener S.
        • Elger M.
        Long-term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis.
        Kidney Int. 1995; 48: 1435-1450
        • Kriz W.
        • Hähnel B.
        • Hosser H.
        • Ostendorf T.
        • Kränzlin B.
        • Gretz N.
        • Shimizu F.
        • Floege J.
        Pathways to recovery and loss of nephrons in anti-Thy-1 nephritis.
        J Am Soc Nephrol. 2003; 14: 1904-1926
        • Howie A.J.
        • Lee S.J.
        • Sparke J.
        Pathogenesis of segmental glomerular changes at the tubular origin, as in the glomerular tip lesion.
        J Pathol. 1995; 177: 191-199
        • Kriz W.
        Maintenance and Breakdown of Glomerular Tuft Architecture.
        J Am Soc Nephrol. 2018; 29: 1075-1077
        • Dworkin L.D.
        • Ichikawa I.
        • Brenner B.M.
        Hormonal modulation of glomerular function.
        Am J Physiol. 1983; 244: F95-F104
        • Simons J.L.
        • Provoost A.P.
        • Anderson S.
        • Rennke H.G.
        • Troy J.L.
        • Brenner B.M.
        Pathogenesis of glomerular injury in the fawn-hooded rat: early glomerular capillary hypertension predicts glomerular sclerosis.
        J Am Soc Nephrol. 1993; 3: 1775-1782
        • Hill G.S.
        Hypertensive nephrosclerosis.
        Curr Opin Nephrol Hypertens. 2008; 17: 266-270
        • Howie A.J.
        • Ferreira M.A.
        • Majumdar A.
        • Lipkin G.W.
        Glomerular prolapse as precursor of one type of segmental sclerosing lesions.
        J Pathol. 2000; 190: 478-493
        • Kurihara H.
        • Sakai T.
        Cell biology of mesangial cells: the third cell that maintains the glomerular capillary.
        Anat Sci Int. 2016; 92: 173-186
        • Sakai T.
        • Kriz W.
        The structural relationship between mesangial cells and basement membrane of the renal glomerulus.
        Anat Embryol. 1987; 176: 373-386
        • Kikkawa Y.
        • Virtanen I.
        • Miner J.H.
        Mesangial cells organize the glomerular capillaries by adhering to the G domain of laminin alpha5 in the glomerular basement membrane.
        J Cell Biol. 2003; 161: 187-196
        • Tsurumi H.
        • Harita Y.
        • Kurihara H.
        • Kosako H.
        • Hayashi K.
        • Matsunaga A.
        • Kajiho Y.
        • Kanda S.
        • Miura K.
        • Sekine T.
        • Oka A.
        • Ishizuka K.
        • Horita S.
        • Hattori M.
        • Hattori S.
        • Igarashi T.
        Epithelial protein lost in neoplasm modulates platelet-derived growth factor-mediated adhesion and motility of mesangial cells.
        Kidney Int. 2014; 86: 548-557
        • Zimmerman S.E.
        • Hiremath C.
        • Tsunezumi J.
        • Yang Z.
        • Finney B.
        • Marciano D.K.
        Nephronectin Regulates Mesangial Cell Adhesion and Behavior in Glomeruli.
        J Am Soc Nephrol. 2018; 29: 1128-1140
        • Le Hir M.
        • Keller C.
        • Eschmann V.
        • Hähnel B.
        • Hosser H.
        • Kriz W.
        Podocyte bridges between the tuft and Bowman's capsule: An early event in experimental crescentic glomerulonephritis.
        J Am Soc Nephrol. 2001; 12: 2060-2071
        • Löwen J.
        • Gröne E.F.
        • Gross-Weissmann M.L.
        • Bestvater F.
        • Gröne H.J.
        • Kriz W.
        Pathomorphological sequence of nephron loss in diabetic nephropathy.
        Am J Physiol Renal Physiol. 2021; 321: F600-F616
        • Kriz W.
        • Le Hir M.
        Pathways to nephron loss starting from glomerular diseases - Insights from animal models.
        Kidney Int. 2005; 67: 404-419
        • Fries J.W.
        • Sandstrom D.J.
        • Meyer T.W.
        • Rennke H.G.
        Glomerular hypertrophy and epithelial cell injury modulate progressive glomerulosclerosis in the rat.
        Lab Invest. 1989; 60: 205-218
        • Wharram B.L.
        • Goyal M.
        • Wiggins J.E.
        • Sanden S.K.
        • Hussain S.
        • Filipiak W.E.
        • Saunders T.L.
        • Dysko R.C.
        • Kohno K.
        • Holzman L.B.
        • Wiggins R.C.
        Podocyte depletion causes glomerulosclerosis: Diphteria toxin-induced podocyte depletion in rats expressing human diphteria toxin receptor transgene.
        J Am Soc Nephrol. 2005; 16: 2941-2952
        • Nagata M.
        • Kriz W.
        Glomerular damage after uninephrectomy in young rats. II. Mechanical stress on podocytes as a pathway to sclerosis.
        Kidney Int. 1992; 42: 148-160
        • Kriz W.
        • Hähnel B.
        • Hosser H.
        • Rösener S.
        • Waldherr R.
        Structural analysis of how podocytes detach from the glomerular basement membrane under hypertrophic stress.
        Front Endocrinol. 2014; 5 (Article 207)
        • Smeets B.
        • Kuppe C.
        • Sicking E.M.
        • Fuss A.
        • Jirak P.
        • van Kuppevelt T.H.
        • Endlich K.H.
        • Wetzels J.F.
        • Grone H.J.
        • Floege J.
        • Moeller M.J.
        Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis.
        J Am Soc Nephrol. 2011; 22: 1262-1274
        • Sakai T.
        • Lemley K.V.
        • Hackenthal E.
        • Nagata M.
        • Nobiling R.
        • Kriz W.
        Changes in glomerular structure following acute mesangial failure in the isolated perfused kidney.
        Kidney Int. 1992; 41: 533-541
        • Siegerist F.
        • Blumenthal A.
        • Zhou W.
        • Endlich K.H.
        • Endlich N.
        Acute podocyte injury is not a stimulus for podocytes to migrate along the glomerular basement membrane in zebrafish larvae.
        Sci Rep. 2017; 743655