Advertisement

iPSC-derived neurons from patients with POLG mutations exhibit decreased mitochondrial content and dendrite simplification

  • Author Footnotes
    ∗ Equal contributions
    ,
    Author Footnotes
    † Current affiliations: MV - Astellas Pharma Inc., Westborough, MA; LF - University of Texas Health Science Center at San Antonio, TX; BNL - Cognition Therapeutics Inc., Pittsburgh, PA.
    Manish Verma
    Footnotes
    ∗ Equal contributions
    † Current affiliations: MV - Astellas Pharma Inc., Westborough, MA; LF - University of Texas Health Science Center at San Antonio, TX; BNL - Cognition Therapeutics Inc., Pittsburgh, PA.
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine
    Search for articles by this author
  • Author Footnotes
    ∗ Equal contributions
    ,
    Author Footnotes
    † Current affiliations: MV - Astellas Pharma Inc., Westborough, MA; LF - University of Texas Health Science Center at San Antonio, TX; BNL - Cognition Therapeutics Inc., Pittsburgh, PA.
    Lily Francis
    Footnotes
    ∗ Equal contributions
    † Current affiliations: MV - Astellas Pharma Inc., Westborough, MA; LF - University of Texas Health Science Center at San Antonio, TX; BNL - Cognition Therapeutics Inc., Pittsburgh, PA.
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine
    Search for articles by this author
  • Author Footnotes
    ∗ Equal contributions
    ,
    Author Footnotes
    † Current affiliations: MV - Astellas Pharma Inc., Westborough, MA; LF - University of Texas Health Science Center at San Antonio, TX; BNL - Cognition Therapeutics Inc., Pittsburgh, PA.
    Britney N. Lizama
    Footnotes
    ∗ Equal contributions
    † Current affiliations: MV - Astellas Pharma Inc., Westborough, MA; LF - University of Texas Health Science Center at San Antonio, TX; BNL - Cognition Therapeutics Inc., Pittsburgh, PA.
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine
    Search for articles by this author
  • Jason Callio
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine
    Search for articles by this author
  • Gabriella Fricklas
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine
    Search for articles by this author
  • Kent Z.Q. Wang
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine
    Search for articles by this author
  • Brett A. Kaufman
    Affiliations
    Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine
    Search for articles by this author
  • Leonardo D’Aiuto
    Affiliations
    Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine
    Search for articles by this author
  • Donna B. Stolz
    Affiliations
    Center for Biologic Imaging (CBI), University of Pittsburgh
    Search for articles by this author
  • Simon C. Watkins
    Affiliations
    Center for Biologic Imaging (CBI), University of Pittsburgh
    Search for articles by this author
  • Vishwajit L. Nimgaonkar
    Affiliations
    Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine

    Department of Human Genetics, University of Pittsburgh Graduate School of Public Health
    Search for articles by this author
  • Alejandro Soto-Gutierrez
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine
    Search for articles by this author
  • Amy Goldstein
    Affiliations
    Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia

    Department of Pediatrics, University of Pennsylvania Perelman School of Medicine
    Search for articles by this author
  • Charleen T. Chu
    Correspondence
    Correspondence: Charleen T. Chu, MD, PhD. S701 Scaife Hall, 200 Lothrop St., Pittsburgh, PA 15261;
    Affiliations
    Department of Pathology, University of Pittsburgh School of Medicine
    Search for articles by this author
  • Author Footnotes
    ∗ Equal contributions
    † Current affiliations: MV - Astellas Pharma Inc., Westborough, MA; LF - University of Texas Health Science Center at San Antonio, TX; BNL - Cognition Therapeutics Inc., Pittsburgh, PA.
Published:November 19, 2022DOI:https://doi.org/10.1016/j.ajpath.2022.11.002

      ABSTRACT

      Mutations in POLG, the gene encoding the catalytic subunit of DNA polymerase gamma (Polγ), result in clinical syndromes characterized by mitochondrial DNA (mtDNA) depletion in affected tissues with variable organ involvement. The brain is one of the most affected organs, and symptoms include intractable seizures, developmental delay, dementia, and ataxia. Patient-derived induced pluripotent stem cells (iPSCs) provide opportunities to explore mechanisms in affected cell types and potential therapeutic strategies. Fibroblasts from two patients were reprogrammed to create new iPSC models of POLG-related mitochondrial diseases. Compared to control iPSC-derived neurons, mtDNA depletion was observed upon differentiation of the POLG-mutated lines to cortical neurons. POLG-mutated neurons exhibited neurite simplification with decreased mitochondrial content, abnormal mitochondrial structure and function, and increased cell death. Expression of the mitochondrial kinase PTEN-induced kinase 1 (PINK1) mRNA was decreased in patient neurons. Overexpression of PINK1 increased mitochondrial content and ATP:ADP ratios in neurites, decreasing cell death and rescuing neuritic complexity. These data indicate an intersection of Polγ and PINK1 pathways that may offer a novel therapeutic option for patients affected by this spectrum of disorders.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References:

        • Phillips N.R.
        • Sprouse M.L.
        • Roby R.K.
        Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: a multiplex real-time PCR assay.
        Sci Rep. 2014; 4: 3887
        • Pearce S.F.
        • Rebelo-Guiomar P.
        • D'Souza A.R.
        • Powell C.A.
        • Van Haute L.
        • Minczuk M.
        Regulation of Mammalian Mitochondrial Gene Expression: Recent Advances.
        Trends Biochem Sci. 2017; 42: 625-639
        • Chan S.S.
        • Copeland W.C.
        DNA polymerase gamma and mitochondrial disease: understanding the consequence of POLG mutations.
        Biochim Biophys Acta. 2009; 1787: 312-319
      1. Cohen BH, Chinnery PF, Copeland WC: POLG-Related Disorders. GeneReviews((R)). Edited by Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Mirzaa GM, Amemiya A. Seattle (WA), 1993.

        • Anagnostou M.E.
        • Ng Y.S.
        • Taylor R.W.
        • McFarland R.
        Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG) gene: A clinical and molecular genetic review.
        Epilepsia. 2016; 57: 1531-1545
        • Zsurka G.
        • Kunz W.S.
        Mitochondrial dysfunction and seizures: the neuronal energy crisis.
        Lancet Neurol. 2015; 14: 956-966
        • Hance N.
        • Ekstrand M.I.
        • Trifunovic A.
        Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis.
        Hum Mol Genet. 2005; 14: 1775-1783
        • Humble M.M.
        • Young M.J.
        • Foley J.F.
        • Pandiri A.R.
        • Travlos G.S.
        • Copeland W.C.
        Polg2 is essential for mammalian embryogenesis and is required for mtDNA maintenance.
        Hum Mol Genet. 2013; 22: 1017-1025
        • Trifunovic A.
        • Wredenberg A.
        • Falkenberg M.
        • Spelbrink J.N.
        • Rovio A.T.
        • Bruder C.E.
        • Bohlooly Y.M.
        • Gidlof S.
        • Oldfors A.
        • Wibom R.
        • Tornell J.
        • Jacobs H.T.
        • Larsson N.G.
        Premature ageing in mice expressing defective mitochondrial DNA polymerase.
        Nature. 2004; 429: 417-423
        • Kujoth G.C.
        • Hiona A.
        • Pugh T.D.
        • Someya S.
        • Panzer K.
        • Wohlgemuth S.E.
        • Hofer T.
        • Seo A.Y.
        • Sullivan R.
        • Jobling W.A.
        • Morrow J.D.
        • Van Remmen H.
        • Sedivy J.M.
        • Yamasoba T.
        • Tanokura M.
        • Weindruch R.
        • Leeuwenburgh C.
        • Prolla T.A.
        Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging.
        Science. 2005; 309: 481-484
        • Perier C.
        • Bender A.
        • Garcia-Arumi E.
        • Melia M.J.
        • Bove J.
        • Laub C.
        • Klopstock T.
        • Elstner M.
        • Mounsey R.B.
        • Teismann P.
        • Prolla T.
        • Andreu A.L.
        • Vila M.
        Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.
        Brain. 2013; 136: 2369-2378
        • Takahashi K.
        • Tanabe K.
        • Ohnuki M.
        • Narita M.
        • Ichisaka T.
        • Tomoda K.
        • Yamanaka S.
        Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
        Cell. 2007; 131: 861-872
        • Shi Y.
        • Inoue H.
        • Wu J.C.
        • Yamanaka S.
        Induced pluripotent stem cell technology: a decade of progress.
        Nat Rev Drug Discov. 2017; 16: 115-130
        • Nguyen K.V.
        • Sharief F.S.
        • Chan S.S.
        • Copeland W.C.
        • Naviaux R.K.
        Molecular diagnosis of Alpers syndrome.
        J Hepatol. 2006; 45: 108-116
        • Saneto R.P.
        • Naviaux R.K.
        Polymerase gamma disease through the ages.
        Dev Disabil Res Rev. 2010; 16: 163-174
        • D'Aiuto L.
        • Zhi Y.
        • Kumar Das D.
        • Wilcox M.R.
        • Johnson J.W.
        • McClain L.
        • MacDonald M.L.
        • Di Maio R.
        • Schurdak M.E.
        • Piazza P.
        • Viggiano L.
        • Sweet R.
        • Kinchington P.R.
        • Bhattacharjee A.G.
        • Yolken R.
        • Nimgaonkar V.L.
        Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.
        Organogenesis. 2014; 10: 365-377
        • Giordano L.
        • Gregory A.D.
        • Perez Verdaguer M.
        • Ware S.A.
        • Harvey H.
        • DeVallance E.
        • Brzoska T.
        • Sundd P.
        • Zhang Y.
        • Sciurba F.C.
        • Shapiro S.D.
        • Kaufman B.A.
        Extracellular Release of Mitochondrial DNA: Triggered by Cigarette Smoke and Detected in COPD.
        Cells. 2022; : 11
        • Tantama M.
        • Martinez-Francois J.R.
        • Mongeon R.
        • Yellen G.
        Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio.
        Nat Commun. 2013; 4: 2550
        • Schneider C.A.
        • Rasband W.S.
        • Eliceiri K.W.
        NIH Image to ImageJ: 25 years of image analysis.
        Nat Methods. 2012; 9: 671-675
        • Cherra 3rd, S.J.
        • Steer E.
        • Gusdon A.M.
        • Kiselyov K.
        • Chu C.T.
        Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons.
        Am J Pathol. 2013; 182: 474-484
        • Dagda R.K.
        • Pien I.
        • Wang R.
        • Zhu J.
        • Wang K.Z.
        • Callio J.
        • Banerjee T.D.
        • Dagda R.Y.
        • Chu C.T.
        Beyond the mitochondrion: cytosolic PINK1 remodels dendrites through protein kinase A.
        J Neurochem. 2014; 128: 864-877
        • Plowey E.D.
        • Cherra 3rd, S.J.
        • Liu Y.J.
        • Chu C.T.
        Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells.
        J Neurochem. 2008; 105: 1048-1056
        • Chu C.T.
        • Plowey E.D.
        • Dagda R.K.
        • Hickey R.W.
        • Cherra 3rd, S.J.
        • Clark R.S.
        Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models.
        Methods Enzymol. 2009; 453: 217-249
        • Stewart J.D.
        • Schoeler S.
        • Sitarz K.S.
        • Horvath R.
        • Hallmann K.
        • Pyle A.
        • Yu-Wai-Man P.
        • Taylor R.W.
        • Samuels D.C.
        • Kunz W.S.
        • Chinnery P.F.
        POLG mutations cause decreased mitochondrial DNA repopulation rates following induced depletion in human fibroblasts.
        Biochim Biophys Acta. 2011; 1812: 321-325
        • Das Banerjee T.
        • Dagda R.Y.
        • Dagda M.
        • Chu C.T.
        • Rice M.
        • Vazquez-Mayorga E.
        • Dagda R.K.
        PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.
        J Neurochem. 2017; 142: 545-559
        • Liu Y.
        • Lear T.B.
        • Verma M.
        • Wang K.Z.
        • Otero P.A.
        • McKelvey A.C.
        • Dunn S.R.
        • Steer E.
        • Bateman N.W.
        • Wu C.
        • Jiang Y.
        • Weathington N.M.
        • Rojas M.
        • Chu C.T.
        • Chen B.B.
        • Mallampalli R.K.
        Chemical inhibition of FBXO7 reduces inflammation and confers neuroprotection by stabilizing the mitochondrial kinase PINK1.
        JCI Insight. 2020; 5e131834
      2. Hudson G, Chinnery PF: Mitochondrial DNA polymerase-gamma and human disease. Hum Mol Genet 2006, 15 Spec No 2:R244-R252.

        • Rahman S.
        • Copeland W.C.
        POLG-related disorders and their neurological manifestations.
        Nat Rev Neurol. 2019; 15: 40-52
        • Uusimaa J.
        • Gowda V.
        • McShane A.
        • Smith C.
        • Evans J.
        • Shrier A.
        • Narasimhan M.
        • O'Rourke A.
        • Rajabally Y.
        • Hedderly T.
        • Cowan F.
        • Fratter C.
        • Poulton J.
        Prospective study of POLG mutations presenting in children with intractable epilepsy: prevalence and clinical features.
        Epilepsia. 2013; 54: 1002-1011
        • Hikmat O.
        • Eichele T.
        • Tzoulis C.
        • Bindoff L.A.
        Understanding the Epilepsy in POLG Related Disease.
        Int J Mol Sci. 2017; 18
        • Ueda K.
        • Serajee F.
        • Huq A.M.
        Clinical Benefit of NMDA Receptor Antagonists in a Patient With ATP1A2 Gene Mutation.
        Pediatrics. 2018; 141: S390-S394
        • Ferrari G.
        • Lamantea E.
        • Donati A.
        • Filosto M.
        • Briem E.
        • Carrara F.
        • Parini R.
        • Simonati A.
        • Santer R.
        • Zeviani M.
        Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gammaA.
        Brain. 2005; 128: 723-731
        • Tzoulis C.
        • Tran G.T.
        • Coxhead J.
        • Bertelsen B.
        • Lilleng P.K.
        • Balafkan N.
        • Payne B.
        • Miletic H.
        • Chinnery P.F.
        • Bindoff L.A.
        Molecular pathogenesis of polymerase gamma-related neurodegeneration.
        Ann Neurol. 2014; 76: 66-81
        • Rajakulendran S.
        • Pitceathly R.D.
        • Taanman J.W.
        • Costello H.
        • Sweeney M.G.
        • Woodward C.E.
        • Jaunmuktane Z.
        • Holton J.L.
        • Jacques T.S.
        • Harding B.N.
        • Fratter C.
        • Hanna M.G.
        • Rahman S.
        A Clinical, Neuropathological and Genetic Study of Homozygous A467T POLG-Related Mitochondrial Disease.
        PLoS One. 2016; 11e0145500
        • Nolte K.W.
        • Trepels-Kottek S.
        • Honnef D.
        • Weis J.
        • Bien C.G.
        • van Baalen A.
        • Ritter K.
        • Czermin B.
        • Rudnik-Schoneborn S.
        • Wagner N.
        • Hausler M.
        Early muscle and brain ultrastructural changes in polymerase gamma 1-related encephalomyopathy.
        Neuropathology. 2013; 33: 59-67
        • Gustafsson C.M.
        • Falkenberg M.
        • Larsson N.G.
        Maintenance and Expression of Mammalian Mitochondrial DNA.
        Annu Rev Biochem. 2016; 85: 133-160
        • Mlody B.
        • Prigione A.
        A Glycolytic Solution for Pluripotent Stem Cells.
        Cell Stem Cell. 2016; 19: 419-420
        • Almeida A.S.
        Vieira HLA: Role of Cell Metabolism and Mitochondrial Function During Adult Neurogenesis.
        Neurochem Res. 2017; 42: 1787-1794
        • Lopes C.
        • Rego A.C.
        Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases?.
        Mol Neurobiol. 2017; 54: 1858-1873
        • Kandul N.P.
        • Zhang T.
        • Hay B.A.
        • Guo M.
        Selective removal of deletion-bearing mitochondrial DNA in heteroplasmic Drosophila.
        Nat Commun. 2016; 713100
        • Foote K.
        • Reinhold J.
        • Yu E.P.K.
        • Figg N.L.
        • Finigan A.
        • Murphy M.P.
        • Bennett M.R.
        Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice.
        Aging Cell. 2018; e12773
        • Otero P.A.
        • Fricklas G.
        • Nigam A.
        • Lizama B.N.
        • Wills Z.P.
        • Johnson J.W.
        • Chu C.T.
        Endogenous PTEN-induced kinase 1 regulates dendritic architecture and spinogenesis.
        J Neurosci. 2022; 42: 7848-7860
        • Wang K.Z.Q.
        • Steer E.
        • Otero P.A.
        • Bateman N.W.
        • Cheng M.H.
        • Scott A.L.
        • Wu C.
        • Bahar I.
        • Shih Y.T.
        • Hsueh Y.P.
        • Chu C.T.
        PINK1 Interacts with VCP/p97 and Activates PKA to Promote NSFL1C/p47 Phosphorylation and Dendritic Arborization in Neurons.
        eNeuro. 2018; 5 (ENEURO.0466--18.2018 , pmid = 30783609)
        • Valenci I.
        • Yonai L.
        • Bar-Yaacov D.
        • Mishmar D.
        • Ben-Zvi A.
        Parkin modulates heteroplasmy of truncated mtDNA in Caenorhabditis elegans.
        Mitochondrion. 2015; 20: 64-70
        • Shin J.H.
        • Ko H.S.
        • Kang H.
        • Lee Y.
        • Lee Y.I.
        • Pletinkova O.
        • Troconso J.C.
        • Dawson V.L.
        • Dawson T.M.
        PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease.
        Cell. 2011; 144: 689-702
        • Hamazaki T.
        • El Rouby N.
        • Fredette N.C.
        • Santostefano K.E.
        • Terada N.
        Concise Review: Induced Pluripotent Stem Cell Research in the Era of Precision Medicine.
        Stem Cells. 2017; 35: 545-550