Advertisement

Whole-Slide Cytometric Feature Mapping for Distinguishing Tumor Genomic Subtypes in Head and Neck Squamous Cell Carcinoma Whole-Slide Images

Published:November 19, 2022DOI:https://doi.org/10.1016/j.ajpath.2022.11.004
      Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease where, in advanced stages, clinical and pathologic stages do not correlate with outcome. Molecular and genomic biomarkers for HNSCC classification have shown promise for prognostic and therapeutic applications. In this study, we utilize automated image analysis techniques in whole-slide images of HNSCC tumors to identify relationships between cytometric features and genomic phenotypes. Hematoxylin and eosin–stained slides of HNSCC tumors (N = 49) were obtained from The Cancer Imaging Archive, along with accompanying clinical, pathologic, genomic, and proteomic reports. Automated nuclear detection was performed across the entirety of slides, and cytometric feature maps were generated. Forty-one cytometric features were evaluated for associations with tumor grade, tumor stage, tumor subsite, and integrated genomic subtype. Thirty-two features demonstrated significant association with integrated genomic subtype when corrected for multiple comparisons. In particular, the basal subtype was visually distinguishable from the chromosomal instability and immune subtypes based on cytometric feature measurements. No features were significantly associated with tumor grade, stage, or subsite. This study provides preliminary evidence that features derived from tissue pathology slides could provide insights into genomic phenotypes of HNSCC.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kademani D.
        Oral cancer.
        Mayo Clin Proc. 2007; 82: 878-887
        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2017.
        CA Cancer J Clin. 2017; 67: 7-30
        • Brockstein B.
        • Haraf D.J.
        • Rademaker A.W.
        • Kies M.S.
        • Stenson K.M.
        • Rosen F.
        • Mittal B.B.
        • Pelzer H.
        • Fung B.B.
        • Witt M.E.
        • Wenig B.
        • Portugal L.
        • Weichselbaum R.W.
        • Vokes E.E.
        Patterns of failure, prognostic factors and survival in locoregionally advanced head and neck cancer treated with concomitant chemoradiotherapy: a 9-year, 337-patient, multi-institutional experience.
        Ann Oncol. 2004; 15: 1179-1186
        • Haddad R.I.
        • Shin D.M.
        Recent advances in head and neck cancer.
        N Engl J Med. 2008; 359: 1143-1154
        • Rogers S.N.
        • Brown J.S.
        • Woolgar J.A.
        • Lowe D.
        • Magennis P.
        • Shaw R.J.
        • Sutton D.
        • Errington D.
        • Vaughan D.
        Survival following primary surgery for oral cancer.
        Oral Oncol. 2009; 45: 201-211
        • Ang K.K.
        • Chen A.
        • Curran Jr., W.J.
        • Garden A.S.
        • Harari P.M.
        • Murphy B.A.
        • Wong S.J.
        • Bellm L.A.
        • Schwartz M.
        • Newman J.
        • Adkins D.
        • Hayes D.N.
        • Parvathaneni U.
        • Brachman D.
        • Ghabach B.
        • Schneider C.J.
        • Greenberg M.
        • Anne P.R.
        Head and neck carcinoma in the United States: first comprehensive report of the Longitudinal Oncology Registry of Head and Neck Carcinoma (LORHAN).
        Cancer. 2012; 118: 5783-5792
        • Ausoni S.
        • Boscolo-Rizzo P.
        • Singh B.
        • Da Mosto M.C.
        • Spinato G.
        • Tirelli G.
        • Spinato R.
        • Azzarello G.
        Targeting cellular and molecular drivers of head and neck squamous cell carcinoma: current options and emerging perspectives.
        Cancer Metastasis Rev. 2016; 35: 413-426
        • Muzaffar J.
        • Bari S.
        • Kirtane K.
        • Chung C.H.
        Recent advances and future directions in clinical management of head and neck squamous cell carcinoma.
        Cancers (Basel). 2021; 13: 338
        • Patel S.G.
        • Shah J.P.
        TNM staging of cancers of the head and neck: striving for uniformity among diversity.
        CA Cancer J Clin. 2005; 55 (quiz 61-62, 64): 242-258
        • Clark K.
        • Vendt B.
        • Smith K.
        • Freymann J.
        • Kirby J.
        • Koppel P.
        • Moore S.
        • Phillips S.
        • Maffitt D.
        • Pringle M.
        • Tarbox L.
        • Prior F.
        The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository.
        J Digit Imaging. 2013; 26: 1045-1057
      1. (CPTAC) NCICPTAC: Radiology Data from the Clinical Proteomic Tumor Analysis Consortium Head and Neck Squamous Cell Carcinoma [CPTAC-HNSCC] Collection. The Cancer Imaging Archive, 2018
        • Huang C.
        • Chen L.
        • Savage S.R.
        • Eguez R.V.
        • Dou Y.
        • Li Y.
        • et al.
        Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma.
        Cancer Cell. 2021; 39: 361-379.e16
        • Blocker S.J.
        • Cook J.
        • Everitt J.I.
        • Austin W.M.
        • Watts T.L.
        • Mowery Y.M.
        Automated nuclear segmentation in head and neck squamous cell carcinoma pathology reveals relationships between cytometric features and ESTIMATE stromal and immune scores.
        Am J Pathol. 2022; 192: 1305-1320
        • Bankhead P.
        • Loughrey M.B.
        • Fernandez J.A.
        • Dombrowski Y.
        • McArt D.G.
        • Dunne P.D.
        • McQuaid S.
        • Gray R.T.
        • Murray L.J.
        • Coleman H.G.
        • James J.A.
        • Salto-Tellez M.
        • Hamilton P.W.
        • QuPath
        Open source software for digital pathology image analysis.
        Sci Rep. 2017; 7: 16878
        • Schindelin J.
        • Arganda-Carreras I.
        • Frise E.
        • Kaynig V.
        • Longair M.
        • Pietzsch T.
        • Preibisch S.
        • Rueden C.
        • Saalfeld S.
        • Schmid B.
        • Tinevez J.Y.
        • White D.J.
        • Hartenstein V.
        • Eliceiri K.
        • Tomancak P.
        • Cardona A.
        Fiji: an open-source platform for biological-image analysis.
        Nat Methods. 2012; 9: 676-682
        • Schmidt U.
        • Weigert M.
        • Broaddus C.
        • Myers G.
        Cell detection with star-convex polygons. Medical Image Computing and Computer Assisted Intervention Society Conference.
        2018: 8 (Granada, Spain)
        • von Chamier L.
        • Laine R.F.
        • Jukkala J.
        • Spahn C.
        • Krentzel D.
        • Nehme E.
        • Lerche M.
        • Hernandez-Perez S.
        • Mattila P.K.
        • Karinou E.
        • Holden S.
        • Solak A.C.
        • Krull A.
        • Buchholz T.O.
        • Jones M.L.
        • Royer L.A.
        • Leterrier C.
        • Shechtman Y.
        • Jug F.
        • Heilemann M.
        • Jacquemet G.
        • Henriques R.
        Democratising deep learning for microscopy with ZeroCostDL4Mic.
        Nat Commun. 2021; 12: 2276
        • Blocker S.J.
        • Cook J.
        • Mowery Y.M.
        • Everitt J.I.
        • Qi Y.
        • Hornburg K.J.
        • Cofer G.P.
        • Zapata F.
        • Bassil A.M.
        • Badea C.T.
        • Kirsch D.G.
        • Johnson G.A.
        Ex vivo MR histology and cytometric feature mapping connect three-dimensional in vivo MR images to two-dimensional histopathologic images of murine sarcomas.
        Radiol Imaging Cancer. 2021; 3: e200103
        • Zanoni D.K.
        • Patel S.G.
        • Shah J.P.
        Changes in the 8th edition of the American Joint Committee on Cancer (AJCC) staging of head and neck cancer: rationale and implications.
        Curr Oncol Rep. 2019; 21: 52
        • Wu J.
        • Zhang J.
        • Li Q.
        • Su Y.
        • Chen K.
        • Reiman E.M.
        • Wang J.
        • Lepore N.
        • Ye J.
        • Thompson P.M.
        • Wang Y.
        Patch-based surface morphometry feature selection with federated group lasso regression.
        Proc SPIE Int Soc Opt Eng. 2020; 11583: 1158304
        • Steyerberg E.W.
        • Harrell Jr., F.E.
        • Borsboom G.J.
        • Eijkemans M.J.
        • Vergouwe Y.
        • Habbema J.D.
        Internal validation of predictive models: efficiency of some procedures for logistic regression analysis.
        J Clin Epidemiol. 2001; 54: 774-781
        • Chai A.W.Y.
        • Lim K.P.
        • Cheong S.C.
        Translational genomics and recent advances in oral squamous cell carcinoma.
        Semin Cancer Biol. 2020; 61: 71-83
        • Zevallos J.P.
        • Mazul A.L.
        • Walter V.
        • Hayes D.N.
        Gene expression subtype predicts nodal metastasis and survival in human papillomavirus-negative head and neck cancer.
        Laryngoscope. 2019; 129: 154-161
        • Chen Y.
        • Zee J.
        • Smith A.
        • Jayapandian C.
        • Hodgin J.
        • Howell D.
        • Palmer M.
        • Thomas D.
        • Cassol C.
        • Farris 3rd, A.B.
        • Perkinson K.
        • Madabhushi A.
        • Barisoni L.
        • Janowczyk A.
        Assessment of a computerized quantitative quality control tool for whole slide images of kidney biopsies.
        J Pathol. 2021; 253: 268-278