Advertisement

Fibroblast Programmed Cell Death Ligand 1 Promotes Osteoclastogenesis in Odontogenic Keratocysts

  • Tianshuang Zhu
    Affiliations
    The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China

    Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
    Search for articles by this author
  • Rong Wang
    Affiliations
    The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
    Search for articles by this author
  • Hao Jiang
    Affiliations
    The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
    Search for articles by this author
  • Alex Shi
    Affiliations
    Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Maosheng Chai
    Affiliations
    The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
    Search for articles by this author
  • Congfa Huang
    Affiliations
    The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China

    Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
    Search for articles by this author
  • Shaodong Yang
    Affiliations
    The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
    Search for articles by this author
  • Wenqun Zhong
    Correspondence
    Address correspondence to Wenqun Zhong or Yu Cai, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Rd., Wuhan 430079, China.
    Affiliations
    The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China

    Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
    Search for articles by this author
  • Yu Cai
    Correspondence
    Address correspondence to Wenqun Zhong or Yu Cai, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Rd., Wuhan 430079, China.
    Affiliations
    The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China

    Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
    Search for articles by this author
Published:December 09, 2022DOI:https://doi.org/10.1016/j.ajpath.2022.11.009
      Local aggressive growth of odontogenic keratocysts (OKCs) can cause serious bone destruction, even resulting in pathologic fractures of the mandible. With the aim to explore the mechanism of osteoclastogenesis in OKCs, the role of programmed cell death ligand 1 (PD-L1), a key immune checkpoint, in OKCs and its relationship with the M2 isoform of pyruvate kinase (PKM2), a key enzyme of glycolysis, were investigated. The data from immunohistochemistry, real-time quantitative PCR, Western blot analysis, and flow cytometry showed that the expression level of PD-L1 was significantly increased in the stroma and fibroblasts of OKCs (OKC-Fs) when compared with oral mucosa. Double-labeling staining demonstrated that osteoclasts in OKCs spatially interacted with PD-L1–positive OKC-Fs. Exogenous expression of PD-L1 in OKC-Fs promoted osteoclastogenesis when OKC-Fs were co-cultured with osteoclast precursors (RAW264.7 cells). Because OKC-Fs exhibit energy dependency and acquire energy from PKM2-mediated glycolysis, this study generated stable PKM2 knockdown OKC-Fs using shRNAs against PKM2, and found that PD-L1 expression level was decreased by PKM2 knockdown. Furthermore, Spearman rank correlation analysis showed that there was a positive correlation between the immunostaining of PKM2 and PD-L1 in OKC samples. In addition, double-labeling immunofluorescence showed colocalizations between PKM2 and PD-L1 in the fibrous tissue walls of OKCs. In conclusion, PD-L1 in fibroblasts promotes osteoclastogenesis in OKCs, which is regulated by PKM2.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Man Q.W.
        • Li R.F.
        • Li S.R.
        • Wang J.
        • Bu L.L.
        • Zhao Y.
        • Liu B.
        Single-cell RNA sequencing reveals CXCLs enriched fibroblasts within odontogenic keratocysts.
        J Inflamm Res. 2021; 14: 7359-7369
        • Man Q.W.
        • Zhang L.Z.
        • Zhao Y.
        • Liu J.Y.
        • Zheng Y.Y.
        • Zhao Y.F.
        • Liu B.
        Lymphocyte-derived microparticles stimulate osteoclastogenesis by inducing RANKL in fibroblasts of odontogenic keratocysts.
        Oncol Rep. 2018; 40: 3335-3345
        • Li T.J.
        The odontogenic keratocyst: a cyst, or a cystic neoplasm?.
        J Dent Res. 2011; 90: 133-142
        • Eshghyar N.
        • Nikbin B.
        • Amirzargar A.
        • Dehghani Nazhvani A.
        • Shakiba Y.
        Gene polymorphism of interleukin-1 alpha and beta in keratocystic odontogenic tumors.
        J Oral Pathol Med. 2012; 41: 697-701
        • Sharif F.N.
        • Oliver R.
        • Sweet C.
        • Sharif M.O.
        Interventions for the treatment of keratocystic odontogenic tumours (KCOT, odontogenic keratocysts (OKC)).
        Cochrane Database Syst Rev. 2010; : CD008464
        • Tekkesin M.S.
        • Mutlu S.
        • Olgac V.
        The role of RANK/RANKL/OPG signalling pathways in osteoclastogenesis in odontogenic keratocysts, radicular cysts, and ameloblastomas.
        Head Neck Pathol. 2011; 5: 248-253
        • Wang K.
        • Gu Y.
        • Liao Y.
        • Bang S.
        • Donnelly C.R.
        • Chen O.
        • Tao X.
        • Mirando A.J.
        • Hilton M.J.
        • Ji R.-R.
        PD-1 blockade inhibits osteoclast formation and murine bone cancer pain.
        J Clin Invest. 2020; 130: 3603-3620
        • Nagahama K.
        • Aoki K.
        • Nonaka K.
        • Saito H.
        • Takahashi M.
        • Varghese B.J.
        • Shimokawa H.
        • Azuma M.
        • Ohya K.
        • Ohyama K.
        The deficiency of immunoregulatory receptor PD-1 causes mild osteopetrosis.
        Bone. 2004; 35: 1059-1068
        • Ahn J.-H.
        • Lee B.-H.
        • Kim S.-E.
        • Kwon B.-E.
        • Jeong H.
        • Choi J.R.
        • Kim M.J.
        • Park Y.
        • Kim B.S.
        • Kim D.H.
        • Ko H.-J.
        A novel anti-PD-L1 antibody exhibits antitumor effects on multiple myeloma in murine models via antibody-dependent cellular cytotoxicity.
        Biomol Ther (Seoul). 2021; 29: 166-174
        • Brahmer J.R.
        • Tykodi S.S.
        • Chow L.Q.M.
        • Hwu W.-J.
        • Topalian S.L.
        • Hwu P.
        • Drake C.G.
        • Camacho L.H.
        • Kauh J.
        • Odunsi K.
        • Pitot H.C.
        • Hamid O.
        • Bhatia S.
        • Martins R.
        • Eaton K.
        • Chen S.
        • Salay T.M.
        • Alaparthy S.
        • Grosso J.F.
        • Korman A.J.
        • Parker S.M.
        • Agrawal S.
        • Goldberg S.M.
        • Pardoll D.M.
        • Gupta A.
        • Wigginton J.M.
        Safety and activity of anti-PD-L1 antibody in patients with advanced cancer.
        N Engl J Med. 2012; 366: 2455-2465
        • Mu X.
        • Zhang M.
        • Wei A.
        • Yin F.
        • Wang Y.
        • Hu K.
        • Jiang J.
        Doxorubicin and PD-L1 siRNA co-delivery with stem cell membrane-coated polydopamine nanoparticles for the targeted chemoimmunotherapy of PCa bone metastases.
        Nanoscale. 2021; 13: 8998-9008
        • Angela Y.
        • Haferkamp S.
        • Weishaupt C.
        • Ugurel S.
        • Becker J.C.
        • Oberndörfer F.
        • Alar V.
        • Satzger I.
        • Gutzmer R.
        Combination of denosumab and immune checkpoint inhibition: experience in 29 patients with metastatic melanoma and bone metastases.
        Cancer Immunol Immunother. 2019; 68: 1187-1194
        • Kobayashi H.
        • Enomoto A.
        • Woods S.L.
        • Burt A.D.
        • Takahashi M.
        • Worthley D.L.
        Cancer-associated fibroblasts in gastrointestinal cancer.
        Nat Rev Gastroenterol Hepatol. 2019; 16: 282-295
        • Sahai E.
        • Astsaturov I.
        • Cukierman E.
        • DeNardo D.G.
        • Egeblad M.
        • Evans R.M.
        • Fearon D.
        • Greten F.R.
        • Hingorani S.R.
        • Hunter T.
        • Hynes R.O.
        • Jain R.K.
        • Janowitz T.
        • Jorgensen C.
        • Kimmelman A.C.
        • Kolonin M.G.
        • Maki R.G.
        • Powers R.S.
        • Puré E.
        • Ramirez D.C.
        • Scherz-Shouval R.
        • Sherman M.H.
        • Stewart S.
        • Tlsty T.D.
        • Tuveson D.A.
        • Watt F.M.
        • Weaver V.
        • Weeraratna A.T.
        • Werb Z.
        A framework for advancing our understanding of cancer-associated fibroblasts.
        Nat Rev Cancer. 2020; 20: 174-186
        • Pavlides S.
        • Whitaker-Menezes D.
        • Castello-Cros R.
        • Flomenberg N.
        • Witkiewicz A.K.
        • Frank P.G.
        • Casimiro M.C.
        • Wang C.
        • Fortina P.
        • Addya S.
        • Pestell R.G.
        • Martinez-Outschoorn U.E.
        • Sotgia F.
        • Lisanti M.P.
        The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.
        Cell Cycle. 2009; 8: 3984-4001
        • Biffi G.
        • Tuveson D.A.
        Diversity and biology of cancer-associated fibroblasts.
        Physiol Rev. 2021; 101: 147-176
        • Wang H.C.
        • Jiang W.P.
        • Sima Z.H.
        • Li T.J.
        Fibroblasts isolated from a keratocystic odontogenic tumor promote osteoclastogenesis in vitro via interaction with epithelial cells.
        Oral Dis. 2015; 21: 170-177
        • Wang H.C.
        • Li T.J.
        The growth and osteoclastogenic effects of fibroblasts isolated from keratocystic odontogenic tumor.
        Oral Dis. 2013; 19: 162-168
        • Hong Y.Y.
        • Yu F.Y.
        • Qu J.F.
        • Chen F.
        • Li T.J.
        Fibroblasts regulate variable aggressiveness of syndromic keratocystic and non-syndromic odontogenic tumors.
        J Dent Res. 2014; 93: 904-910
        • Zou Y.
        • Wang R.
        • Zhao J.
        • Cai Y.
        • Zhong W.
        Increased M2 isoform of pyruvate kinase in fibroblasts contributes to the growth, aggressiveness, and osteoclastogenesis of odontogenic keratocysts.
        Am J Pathol. 2021; 191: 857-871
      1. Committee for the Update of the Guide for the Care and Use of Laboratory Animals: National Research Council: Guide for the Care and Use of Laboratory Animals. Eighth Edition. National Academies Press, Washington, DC2011
        • Zhong W.Q.
        • Li Z.Z.
        • Jiang H.
        • Zou Y.P.
        • Wang H.T.
        • Cai Y.
        • Zhao Y.
        • Zhao J.H.
        Elevated ATF4 expression in odontogenic keratocysts epithelia: potential involvement in tissue hypoxia and stromal M2 macrophage infiltration.
        J Histochem Cytochem. 2019; 67: 801-812
        • Ribbat-Idel J.
        • Dressler F.F.
        • Krupar R.
        • Watermann C.
        • Paulsen F.-O.
        • Kuppler P.
        • Klapper L.
        • Offermann A.
        • Wollenberg B.
        • Rades D.
        • Laban S.
        • Reischl M.
        • Bruchhage K.-L.
        • Idel C.
        • Perner S.
        Performance of different diagnostic PD-L1 clones in head and neck squamous cell carcinoma.
        Front Med (Lausanne). 2021; 8: 640515
        • Zak K.M.
        • Grudnik P.
        • Magiera K.
        • Dömling A.
        • Dubin G.
        • Holak T.A.
        Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2.
        Structure. 2017; 25: 1163-1174
        • Liu T.
        • Li S.
        • Wu L.
        • Yu Q.
        • Li J.
        • Feng J.
        • Zhang J.
        • Chen J.
        • Zhou Y.
        • Ji J.
        • Chen K.
        • Mao Y.
        • Wang F.
        • Dai W.
        • Fan X.
        • Wu J.
        • Guo C.
        Experimental study of hepatocellular carcinoma treatment by shikonin through regulating PKM2.
        J Hepatocell Carcinoma. 2020; 7: 19-31
        • Guo C.
        • He J.
        • Song X.
        • Tan L.
        • Wang M.
        • Jiang P.
        • Li Y.
        • Cao Z.
        • Peng C.
        Pharmacological properties and derivatives of shikonin-a review in recent years.
        Pharmacol Res. 2019; 149: 104463
        • Saxena Y.
        • Routh S.
        • Mukhopadhaya A.
        Immunoporosis: role of innate immune cells in osteoporosis.
        Front Immunol. 2021; 12: 687037
        • Tsukasaki M.
        • Takayanagi H.
        Osteoimmunology: evolving concepts in bone-immune interactions in health and disease.
        Nat Rev Immunol. 2019; 19: 626-642
        • Okamoto K.
        • Takayanagi H.
        Regulation of bone by the adaptive immune system in arthritis.
        Arthritis Res Ther. 2011; 13: 219
        • Park J.H.
        • Lee N.K.
        • Lee S.Y.
        Current understanding of RANK signaling in osteoclast differentiation and maturation.
        Mol Cells. 2017; 40: 706-713
        • Kowada T.
        • Kikuta J.
        • Kubo A.
        • Ishii M.
        • Maeda H.
        • Mizukami S.
        • Kikuchi K.
        In vivo fluorescence imaging of bone-resorbing osteoclasts.
        J Am Chem Soc. 2011; 133: 17772-17776
        • Tay J.Y.Y.
        • Bay B.H.
        • Yeo J.F.
        • Harris M.
        • Meghji S.
        • Dheen S.T.
        Identification of RANKL in osteolytic lesions of the facial skeleton.
        J Dent Res. 2004; 83: 349-353
        • Mendes R.A.
        • Carvalho J.F.
        • van der Waal I.
        Biological pathways involved in the aggressive behavior of the keratocystic odontogenic tumor and possible implications for molecular oriented treatment - an overview.
        Oral Oncol. 2010; 46: 19-24
        • Cha J.-H.
        • Chan L.-C.
        • Li C.-W.
        • Hsu J.L.
        • Hung M.-C.
        Mechanisms controlling PD-L1 expression in cancer.
        Mol Cell. 2019; 76: 359-370
        • Sun C.
        • Mezzadra R.
        • Schumacher T.N.
        Regulation and function of the PD-L1 checkpoint.
        Immunity. 2018; 48: 434-452
        • Yi M.
        • Niu M.
        • Xu L.
        • Luo S.
        • Wu K.
        Regulation of PD-L1 expression in the tumor microenvironment.
        J Hematol Oncol. 2021; 14: 10
        • Clark C.A.
        • Gupta H.B.
        • Sareddy G.
        • Pandeswara S.
        • Lao S.
        • Yuan B.
        • Drerup J.M.
        • Padron A.
        • Conejo-Garcia J.
        • Murthy K.
        • Liu Y.
        • Turk M.J.
        • Thedieck K.
        • Hurez V.
        • Li R.
        • Vadlamudi R.
        • Curiel T.J.
        Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma.
        Cancer Res. 2016; 76: 6964-6974
        • Hou J.
        • Zhao R.
        • Xia W.
        • Chang C.-W.
        • You Y.
        • Hsu J.-M.
        • Nie L.
        • Chen Y.
        • Wang Y.-C.
        • Liu C.
        • Wang W.-J.
        • Wu Y.
        • Ke B.
        • Hsu J.L.
        • Huang K.
        • Ye Z.
        • Yang Y.
        • Xia X.
        • Li Y.
        • Li C.-W.
        • Shao B.
        • Tainer J.A.
        • Hung M.-C.
        PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis.
        Nat Cell Biol. 2020; 22: 1264-1275
        • Wu B.
        • Sun X.
        • Gupta H.B.
        • Yuan B.
        • Li J.
        • Ge F.
        • Chiang H.-C.
        • Zhang X.
        • Zhang C.
        • Zhang D.
        • Yang J.
        • Hu Y.
        • Curiel T.J.
        • Li R.
        Adipose PD-L1 modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in breast cancer.
        Oncoimmunology. 2018; 7: e1500107
        • Annegowda V.M.
        • Devi H.U.
        • Rao K.
        • Smitha T.
        • Sheethal H.S.
        • Smitha A.
        Immunohistochemical study of alpha-smooth muscle actin in odontogenic cysts and tumors.
        J Oral Maxillofac Pathol. 2018; 22: 188-192
        • Zuo H.
        • Wan Y.
        Inhibition of myeloid PD-L1 suppresses osteoclastogenesis and cancer bone metastasis.
        Cancer Gene Ther. 2022; 29: 1342-1354
        • Topalian S.L.
        • Hodi F.S.
        • Brahmer J.R.
        • Gettinger S.N.
        • Smith D.C.
        • McDermott D.F.
        • Powderly J.D.
        • Carvajal R.D.
        • Sosman J.A.
        • Atkins M.B.
        • Leming P.D.
        • Spigel D.R.
        • Antonia S.J.
        • Horn L.
        • Drake C.G.
        • Pardoll D.M.
        • Chen L.
        • Sharfman W.H.
        • Anders R.A.
        • Taube J.M.
        • McMiller T.L.
        • Xu H.
        • Korman A.J.
        • Jure-Kunkel M.
        • Agrawal S.
        • McDonald D.
        • Kollia G.D.
        • Gupta A.
        • Wigginton J.M.
        • Sznol M.
        Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.
        N Engl J Med. 2012; 366: 2443-2454
        • Carlino M.S.
        • Larkin J.
        • Long G.V.
        Immune checkpoint inhibitors in melanoma.
        Lancet. 2021; 398: 1002-1014
        • Yu W.
        • Wang Y.
        • Zhu J.
        • Jin L.
        • Liu B.
        • Xia K.
        • Wang J.
        • Gao J.
        • Liang C.
        • Tao H.
        Autophagy inhibitor enhance ZnPc/BSA nanoparticle induced photodynamic therapy by suppressing PD-L1 expression in osteosarcoma immunotherapy.
        Biomaterials. 2019; 192: 128-139
        • Chen M.
        • Liu H.
        • Li Z.
        • Ming A.L.
        • Chen H.
        Mechanism of PKM2 affecting cancer immunity and metabolism in tumor microenvironment.
        J Cancer. 2021; 12: 3566-3574
        • Palsson-McDermott E.M.
        • Dyck L.
        • Zasłona Z.
        • Menon D.
        • McGettrick A.F.
        • Mills K.H.G.
        • O'Neill L.A.
        Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors.
        Front Immunol. 2017; 8: 1300
        • Xia Q.
        • Jia J.
        • Hu C.
        • Lu J.
        • Li J.
        • Xu H.
        • Fang J.
        • Feng D.
        • Wang L.
        • Chen Y.
        Tumor-associated macrophages promote PD-L1 expression in tumor cells by regulating PKM2 nuclear translocation in pancreatic ductal adenocarcinoma.
        Oncogene. 2022; 41: 865-877