Advertisement

Effects of Acute and Chronic Trypanosoma cruzi Infection on Pregnancy Outcomes in Mice

Parasite Transmission, Mortality, Delayed Growth, and Organ Damage in Pups
  • Lizette E. Rios
    Affiliations
    Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas

    Department of Biochemistry, Cellular and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
    Search for articles by this author
  • Nandadeva Lokugamage
    Affiliations
    Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
    Search for articles by this author
  • Nisha J. Garg
    Correspondence
    Address correspondence to Nisha J. Garg, Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1070.
    Affiliations
    Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas

    Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
    Search for articles by this author
Published:December 21, 2022DOI:https://doi.org/10.1016/j.ajpath.2022.11.010
      Chagas disease is caused by Trypanosoma cruzi. This study aimed to determine the effects of T. cruzi infection on fertility rate and health of the newborn pups in pregnant mice. Female mice were challenged with T. cruzi and mated at 21 days (acute parasitemic phase) or 90 days (chronic parasite persistence phase) after infection. Pups were examined for growth up to 20 days after birth; and parasite burden in brain, heart, skeletal muscle, and intestine was measured by real-time quantitative PCR. The inflammatory infiltrate, necrosis, and fibrosis in pups' heart and brain tissues were evaluated by histology. It was found that T. cruzi infection in dams delayed the onset of pregnancy, decreased the fertility rate, and led to vertical transmission of parasite to the pups. Furthermore, infected dams delivered pups that exhibited decreased survival rate, decreased birth weight, and decreased growth rate. Significantly increased inflammation, necrosis, and fibrosis of cardiac and brain tissues were noted in pups born to infected dams. Initial challenge with higher parasite dose had more detrimental effects on fertility rate and pups' health in both acutely and chronically infected dams. In conclusion, mice offer a promising model to evaluate the efficacy of new vaccines and therapeutic drugs in controlling the acute and chronic maternal T. cruzi infection and congenital transmission to newborns, and in improving the fertility rate and pups' health outcomes.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Antinori S.
        • Galimberti L.
        • Bianco R.
        • Grande R.
        • Galli M.
        • Corbellino M.
        Chagas disease in Europe: a review for the internist in the globalized world.
        Eur J Intern Med. 2017; 43: 6-15
        • Buekens P.
        • Berrueta M.
        • Harville E.
        • Mazzoni A.
        • Xiong X.
        Eliminating congenital syphilis and congenital Chagas disease.
        Lancet Reg Health Am. 2022; 12: 100287
        • Picado A.
        • Cruz I.
        • Redard-Jacot M.
        • Schijman A.G.
        • Torrico F.
        • Sosa-Estani S.
        • Katz Z.
        • Ndung'u J.M.
        The burden of congenital Chagas disease and implementation of molecular diagnostic tools in Latin America.
        BMJ Glob Health. 2018; 3: e001069
        • Irish A.
        • Whitman J.D.
        • Clark E.H.
        • Marcus R.
        • Bern C.
        Updated estimates and mapping for prevalence of Chagas disease among adults, United States.
        Emerg Infect Dis. 2022; 28: 1313-1320
        • Cevallos A.M.
        • Hernández R.
        Chagas' disease: pregnancy and congenital transmission.
        Biomed Res Int. 2014; 2014: 10
        • Pinazo M.J.
        • Espinosa G.
        • Cortes-Lletget C.
        • Posada Ede J.
        • Aldasoro E.
        • Oliveira I.
        • Muñoz J.
        • Gállego M.
        • Gascon J.
        Immunosuppression and Chagas disease: a management challenge.
        PLoS Negl Trop Dis. 2013; 7: e1965
        • Moretti E.
        • Basso B.
        • Castro I.
        • Carrizo Paez M.
        • Chaul M.
        • Barbieri G.
        • Canal Feijoo D.
        • Sartori M.J.
        • Carrizo Paez R.
        Chagas' disease: study of congenital transmission in cases of acute maternal infection.
        Rev Soc Bras Med Trop. 2005; 38: 53-55
        • Salas N.A.
        • Cot M.
        • Schneider D.
        • Mendoza B.
        • Santalla J.A.
        • Postigo J.
        • Chippaux J.P.
        • Brutus L.
        Risk factors and consequences of congenital Chagas disease in Yacuiba, south Bolivia.
        Trop Med Int Health. 2007; 12: 1498-1505
        • Howard E.J.
        • Xiong X.
        • Carlier Y.
        • Sosa-Estani S.
        • Buekens P.
        Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis.
        BJOG. 2014; 121: 22-33
        • Abu-Raya B.
        • Michalski C.
        • Sadarangani M.
        • Lavoie P.M.
        Maternal immunological adaptation during normal pregnancy.
        Front Immunol. 2020; 11: 575197
        • Brutus L.
        • Castillo H.
        • Bernal C.
        • Salas N.A.
        • Schneider D.
        • Santalla J.A.
        • Chippaux J.P.
        Detectable Trypanosoma cruzi parasitemia during pregnancy and delivery as a risk factor for congenital Chagas disease.
        Am J Trop Med Hyg. 2010; 83: 1044-1047
        • Siriano Lda R.
        • Luquetti A.O.
        • Avelar J.B.
        • Marra N.L.
        • de Castro A.M.
        Chagas disease: increased parasitemia during pregnancy detected by hemoculture.
        Am J Trop Med Hyg. 2011; 84: 569-574
        • Diaz-Luján C.
        • Fernanda Triquell M.
        • Mezzano L.
        • Fretes R.E.
        Placental infection by Trypanosoma cruzi, the causal agent of congenital Chagas disease.
        in: Zheng J. Recent Advances in Research on the Human Placenta. IntechOpen, London, UK2012: 127-148
        • Carlier Y.
        • Altcheh J.
        • Angheben A.
        • Freilij H.
        • Luquetti A.O.
        • Schijman A.G.
        • Segovia M.
        • Wagner N.
        • Albajar Vinas P.
        Congenital Chagas disease: updated recommendations for prevention, diagnosis, treatment, and follow-up of newborns and siblings, girls, women of childbearing age, and pregnant women.
        PLoS Negl Trop Dis. 2019; 13: e0007694
        • Carlier Y.
        • Sosa-Estani S.
        • Luquetti A.O.
        • Buekens P.
        Congenital Chagas disease: an update.
        Mem Inst Oswaldo Cruz. 2015; 110: 363-368
        • Messenger L.A.
        • Bern C.
        Congenital Chagas disease: current diagnostics, limitations and future perspectives.
        Curr Opin Infect Dis. 2018; 31: 415-421
        • Messenger L.A.
        • Gilman R.H.
        • Verastegui M.
        • Galdos-Cardenas G.
        • Sanchez G.
        • Valencia E.
        • Sanchez L.
        • Malaga E.
        • Rendell V.R.
        • Jois M.
        • Shah V.
        • Santos N.
        • Abastoflor M.D.C.
        • LaFuente C.
        • Colanzi R.
        • Bozo R.
        • Bern C.
        Toward improving early diagnosis of congenital Chagas disease in an endemic setting.
        Clin Infect Dis. 2017; 65: 268-275
        • Bern C.
        Chagas' disease.
        N Engl J Med. 2015; 373: 456-466
        • Meymandi S.
        • Hernandez S.
        • Park S.
        • Sanchez D.R.
        • Forsyth C.
        Treatment of Chagas disease in the United States.
        Curr Treat Options Infect Dis. 2018; 10: 373-388
        • Alonso-Vega C.
        • Billot C.
        • Torrico F.
        Achievements and challenges upon the implementation of a program for national control of congenital Chagas in Bolivia: results 2004-2009.
        PLoS Negl Trop Dis. 2013; 7: e2304
        • Committee for the Update of the Guide for the Care and Use of Laboratory Animals; National Research Council
        Guide for the Care and Use of Laboratory Animals.
        Eighth Edition. National Academies Press, Washington, DC2011
        • Chowdhury I.H.
        • Lokugamage N.
        • Garg N.J.
        Experimental nanovaccine offers protection against repeat exposures to Trypanosoma cruzi through activation of polyfunctional T cell response.
        Front Immunol. 2020; 11: 595039
        • Garg N.
        • Gerstner A.
        • Bhatia V.
        • DeFord J.
        • Papaconstantinou J.
        Gene expression analysis in mitochondria from chagasic mice: alterations in specific metabolic pathways.
        Biochem J. 2004; 381: 743-752
        • Lokugamage N.
        • Choudhuri S.
        • Davies C.
        • Chowdhury I.H.
        • Garg N.J.
        Antigen-based nano-immunotherapy controls parasite persistence, inflammatory and oxidative stress, and cardiac fibrosis, the hallmarks of chronic Chagas cardiomyopathy, in a mouse model of Trypanosoma cruzi infection.
        Vaccines (Basel). 2020; 8: 96
        • Schneider C.A.
        • Rasband W.S.
        • Eliceiri K.W.
        NIH Image to ImageJ: 25 years of image analysis.
        Nat Methods. 2012; 9: 671-675
        • McCann M.T.
        • Ozolek J.A.
        • Castro C.A.
        • Parvin B.
        • Kovacevic J.
        Automated histology analysis: opportunities for signal processing.
        IEEE Signal Process Mag. 2015; 32: 78-87
        • Janke L.J.
        • Ward J.M.
        • Vogel P.
        Classification, scoring, and quantification of cell death in tissue sections.
        Vet Pathol. 2019; 56: 33-38
        • Chen Y.
        • Yu Q.
        • Xu C.-B.
        A convenient method for quantifying collagen fibers in atherosclerotic lesions by ImageJ software.
        Int J Clin Exp Med. 2017; 10: 14904-14910
        • Arora N.
        • Sadovsky Y.
        • Dermody T.S.
        • Coyne C.B.
        Microbial vertical transmission during human pregnancy.
        Cell Host Microbe. 2017; 21: 561-567
        • Burton G.J.
        • Jauniaux E.
        Placentation in the human and higher primates.
        Adv Anat Embryol Cell Biol. 2021; 234: 223-254
        • Soncin F.
        • Khater M.
        • To C.
        • Pizzo D.
        • Farah O.
        • Wakeland A.
        • Arul Nambi Rajan K.
        • Nelson K.K.
        • Chang C.W.
        • Moretto-Zita M.
        • Natale D.R.
        • Laurent L.C.
        • Parast M.M.
        Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development.
        Development. 2018; 145: dev156273
        • Soncin F.
        • Natale D.
        • Parast M.M.
        Signaling pathways in mouse and human trophoblast differentiation: a comparative review.
        Cell Mol Life Sci. 2015; 72: 1291-1302
        • Andersen M.D.
        • Alstrup A.K.O.
        • Duvald C.S.
        • Mikkelsen E.F.R.
        • Vendelbo M.H.
        • Ovesen P.G.
        • Pedersen M.
        Animal models of fetal medicine and obstetrics.
        in: Bartholomew I. Experimental Animal Models of Human Diseases - An Effective Therapeutic Strategy. IntechOpen, London, UK2018
        • Blaszkowska J.
        • Goralska K.
        Parasites and fungi as a threat for prenatal and postnatal human development.
        Ann Parasitol. 2014; 60: 225-234
        • Moreno E.A.
        • Rivera I.M.
        • Moreno S.C.
        • Alarcón M.E.
        • Lugo-Yarbuh A.
        Vertical transmission of Trypanosoma cruzi in Wistar rats during the acute phase of infection.
        Invest Clin. 2003; 44: 241-254
        • Torres-Vargas J.
        • Jiménez-Coello M.
        • Guzmán-Marín E.
        • Acosta-Viana K.Y.
        • Yadon Z.E.
        • Gutiérrez-Blanco E.
        • Guillermo-Cordero J.L.
        • Garg N.J.
        • Ortega-Pacheco A.
        Quantitative and histological assessment of maternal-fetal transmission of Trypanosoma cruzi in guinea pigs: an experimental model of congenital Chagas disease.
        PLoS Negl Trop Dis. 2018; 12: e0006222
        • Rodríguez-Morales O.
        • Ballinas-Verdugo M.A.
        • Alejandre-Aguilar R.
        • Reyes P.A.
        • Arce-Fonseca M.
        Trypanosoma cruzi connatal transmission in dogs with Chagas disease: experimental case report.
        Vector Borne Zoonotic Dis. 2011; 11: 1365-1370
        • Bustos P.L.
        • Milduberger N.
        • Volta B.J.
        • Perrone A.E.
        • Laucella S.A.
        • Bua J.
        Trypanosoma cruzi infection at the maternal-fetal interface: implications of parasite load in the congenital transmission and challenges in the diagnosis of infected newborns.
        Front Microbiol. 2019; 10: 1250
        • Murcia L.
        • Carrilero B.
        • Munoz-Davila M.J.
        • Thomas M.C.
        • Lopez M.C.
        • Segovia M.
        Risk factors and primary prevention of congenital Chagas disease in a nonendemic country.
        Clin Infect Dis. 2013; 56: 496-502
        • Brabin L.
        The epidemiological significance of Chagas disease in women.
        Mem Inst Oswaldo Cruz. 1992; 87: 73-79
        • Alarcón M.
        • Pérez M.C.
        • Villarreal J.
        • Araujo S.
        • Goncalves L.
        • González A.
        • Moreno E.
        • Lugo-Yarbuh A.
        Detection of Trypanosoma cruzi DNA in the placenta and fetuses of mice with chagasic acute infection.
        Invest Clin. 2009; 50: 335-345
        • Schenone H.
        • Contreras M.C.
        • Borgoño J.M.
        • Rojas A.
        • Villarroel F.
        Congenital Chagas disease in Chile: longitudinal study of the reproductivity of women with or without Chagas disease and of some parasitological and clinical parameters of them and their corresponding children.
        Bol Chil Parasitol. 1985; 40: 24-29
        • Gonzalez Cappa S.M.
        • Mirkin G.A.
        • Solana M.E.
        • Tekiel V.S.
        Trypanosoma cruzi pathology: strain dependent?.
        Medicina (B Aires). 1999; 59: 69-74
        • Cencig S.
        • Coltel N.
        • Truyens C.
        • Carlier Y.
        Fertility, gestation outcome and parasite congenital transmissibility in mice infected with TcI, TcII and TcVI genotypes of Trypanosoma cruzi.
        PLoS Negl Trop Dis. 2013; 7: e2271
        • Id Boufker H.
        • Alexandre H.
        • Carlier Y.
        • Truyens C.
        Infertility in murine acute Trypanosoma cruzi infection is associated with inhibition of pre-implantation embryo development.
        Am J Pathol. 2006; 169: 1730-1738
        • Mjihdi A.
        • Lambot M.-A.
        • Stewart I.J.
        • Detournay O.
        • Noël J.-C.
        • Carlier Y.
        • Truyens C.
        Acute Trypanosoma cruzi infection in mouse induces infertility or placental parasite invasion and ischemic necrosis associated with massive fetal loss.
        Am J Pathol. 2002; 161: 673-680
        • Solana M.E.
        • Celentano A.M.
        • Tekiel V.
        • Jones M.
        • González Cappa S.M.
        Trypanosoma cruzi: effect of parasite subpopulation on murine pregnancy outcome.
        J Parasitol. 2002; 88: 102-106
        • Brenière S.F.
        • Waleckx E.
        • Barnabé C.
        Over six thousand Trypanosoma cruzi strains classified into discrete typing units (DTUs): attempt at an inventory.
        PLoS Negl Trop Dis. 2016; 10: e0004792
        • Corrales R.M.
        • Mora M.C.
        • Negrette O.S.
        • Diosque P.
        • Lacunza D.
        • Virreira M.
        • Breniere S.F.
        • Basombrio M.A.
        Congenital Chagas disease involves Trypanosoma cruzi sub-lineage IId in the northwestern province of Salta, Argentina.
        Infect Genet Evol. 2009; 9: 278-282
        • Herrera C.
        • Truyens C.
        • Dumonteil E.
        • Alger J.
        • Sosa-Estani S.
        • Cafferata M.L.
        • Gibbons L.
        • Ciganda A.
        • Matute M.L.
        • Zuniga C.
        • Carlier Y.
        • Buekens P.
        Phylogenetic analysis of Trypanosoma cruzi from pregnant women and newborns from Argentina, Honduras, and Mexico suggests an association of parasite haplotypes with congenital transmission of the parasite.
        J Mol Diagn. 2019; 21: 1095-1105
        • Ortiz S.
        • Zulantay I.
        • Solari A.
        • Bisio M.
        • Schijman A.
        • Carlier Y.
        • Apt W.
        Presence of Trypanosoma cruzi in pregnant women and typing of lineages in congenital cases.
        Acta Trop. 2012; 124: 243-246
        • Zhang Y.
        • Sheng Z.
        • Gao N.
        • Wu N.
        • Wang P.
        • Fan D.
        • Zhou D.
        • Cheng G.
        • An J.
        Zika virus infection in the ovary induces continuously elevated progesterone level and compromises conception in interferon α/β receptor-deficient mice.
        J Virol. 2021; 96: e01189-21
        • Schuster J.P.
        • Schaub G.A.
        Trypanosoma cruzi: the development of estrus cycle and parasitemia in female mice maintained with or without male pheromones.
        Parasitol Res. 2001; 87: 985-993
        • Li M.
        • Brokaw A.
        • Furuta A.M.
        • Coler B.
        • Obregon-Perko V.
        • Chahroudi A.
        • Wang H.-Y.
        • Permar S.R.
        • Hotchkiss C.E.
        • Golos T.G.
        • Rajagopal L.
        • Adams Waldorf K.M.
        Non-human primate models to investigate mechanisms of infection-associated fetal and pediatric injury, teratogenesis and stillbirth.
        Front Genet. 2021; 12: 680342
        • Altemani A.M.
        • Bittencourt A.L.
        • Lana A.M.
        Immunohistochemical characterization of the inflammatory infiltrate in placental Chagas' disease: a qualitative and quantitative analysis.
        Am J Trop Med Hyg. 2000; 62: 319-324
        • Torrico F.
        • Alonso-Vega C.
        • Suarez E.
        • Rodriguez P.
        • Torrico M.C.
        • Dramaix M.
        • Truyens C.
        • Carlier Y.
        Maternal Trypanosoma cruzi infection, pregnancy outcome, morbidity, and mortality of congenitally infected and non-infected newborns in Bolivia.
        Am J Trop Med Hyg. 2004; 70: 201-209
        • Bittencourt A.L.
        Possible risk factors for vertical transmission of Chagas disease.
        Rev Inst Med Trop Sao Paulo. 1992; 34: 403-408
        • Sanchez Negrette O.
        • Mora M.C.
        • Basombrio M.A.
        High prevalence of congenital Trypanosoma cruzi infection and family clustering in Salta, Argentina.
        Pediatrics. 2005; 115: e668-e672
        • Cardoni R.L.
        • Antunez M.I.
        Outcome of Trypanosoma cruzi infection in pregnant BALB/c mice.
        Ann Trop Med Parasitol. 2004; 98: 883-887
        • Bern C.
        • Verastegui M.
        • Gilman R.H.
        • Lafuente C.
        • Galdos-Cardenas G.
        • Calderon M.
        • Pacori J.
        • Del Carmen Abastoflor M.
        • Aparicio H.
        • Brady M.F.
        • Ferrufino L.
        • Angulo N.
        • Marcus S.
        • Sterling C.
        • Maguire J.H.
        Congenital Trypanosoma cruzi transmission in Santa Cruz, Bolivia.
        Clin Infect Dis. 2009; 49: 1667-1674
        • Feilij H.
        • Muller L.
        • Gonzalez Cappa S.M.
        Direct micromethod for diagnosis of acute and congenital Chagas' disease.
        J Clin Microbiol. 1983; 18: 327-330
        • Umezawa E.S.
        • Nascimento M.S.
        • Kesper Jr., N.
        • Coura J.R.
        • Borges-Pereira J.
        • Junqueira A.C.
        • Camargo M.E.
        Immunoblot assay using excreted-secreted antigens of Trypanosoma cruzi in serodiagnosis of congenital, acute, and chronic Chagas' disease.
        J Clin Microbiol. 1996; 34: 2143-2147
        • Bisio M.M.C.
        • Rivero R.
        • Gonzalez N.
        • Ballering G.
        • D'Amico I.
        • Kessler C.
        • Moroni S.
        • Moscatelli G.
        • Ruiz A.M.
        • Altcheh J.
        Diagnostic accuracy of two molecular tools for diagnosis of congenital Chagas disease.
        Mol Diagn Ther. 2021; 25: 791-801
        • Benatar A.
        • Danesi E.
        • Besuschio S.A.
        • Bortolotti S.
        • Cafferata M.L.
        • Ramírez J.C.
        • Albizu C.L.
        • Scollo K.
        • Baleani M.G.
        • Lara L.
        • Agolti G.
        • Seu S.
        • Adamo E.
        • Lucero R.H.
        • Irazu L.E.
        • Rodriguez M.A.
        • Poeylaut-Palena A.A.
        • Longhi S.A.
        • Esteva M.I.
        • Althabe F.
        • Rojkin F.
        • Bua J.
        • Sosa-Estani S.
        • Schijman A.G.
        Prospective multicenter evaluation of real time PCR kit prototype for early diagnosis of congenital Chagas disease.
        eBioMedicine. 2021; 69: 103450
        • Abras A.
        • Ballart C.
        • Llovet T.
        • Roig C.
        • Gutiérrez C.
        • Tebar S.
        • Berenguer P.
        • Pinazo M.-J.
        • Posada E.
        • Gascón J.
        • Schijman A.G.
        • Gállego M.
        • Muñoz C.
        Introducing automation to the molecular diagnosis of Trypanosoma cruzi infection: a comparative study of sample treatments, DNA extraction methods and real-time PCR assays.
        PLoS One. 2018; 13: e0195738
        • Hurt K.
        • Kodym P.
        • Stejskal D.
        • Zikan M.
        • Mojhova M.
        • Rakovic J.
        Toxoplasmosis impact on prematurity and low birth weight.
        PLoS One. 2022; 17: e0262593
        • Kamal A.M.
        • Ahmed A.K.
        • Mowafy N.M.E.-S.
        • Shawki H.E.
        • Sanad A.S.
        • Hassan E.E.
        Incidence of antenatal trichomoniasis and evaluation of its role as a cause of preterm birth in pregnant women referring to Minia University Hospital, Egypt.
        Iranian J Parasitol. 2018; 13: 58-66
        • Pekelharing J.E.
        • Gatluak F.
        • Harrison T.
        • Maldonado F.
        • Siddiqui M.R.
        • Ritmeijer K.
        Outcomes of visceral leishmaniasis in pregnancy: a retrospective cohort study from South Sudan.
        PLoS Negl Trop Dis. 2020; 14: e0007992
        • Menendez C.
        • Mayor A.
        Congenital malaria: the least known consequence of malaria in pregnancy.
        Semin Fetal Neonatal Med. 2007; 12: 207-213
        • Yockey L.J.
        • Iwasaki A.
        Interferons and proinflammatory cytokines in pregnancy and fetal development.
        Immunity. 2018; 49: 397-412
        • Zhang W.
        • Tan Y.W.
        • Yam W.K.
        • Tu H.
        • Qiu L.
        • Tan E.K.
        • Chu J.J.H.
        • Zeng L.
        In utero infection of Zika virus leads to abnormal central nervous system development in mice.
        Sci Rep. 2019; 9: 7298
        • Andrade E.B.
        • Magalhães A.
        • Puga A.
        • Costa M.
        • Bravo J.
        • Portugal C.C.
        • Ribeiro A.
        • Correia-Neves M.
        • Faustino A.
        • Firon A.
        • Trieu-Cuot P.
        • Summavielle T.
        • Ferreira P.
        A mouse model reproducing the pathophysiology of neonatal group B streptococcal infection.
        Nat Commun. 2018; 9: 3138
        • Sparkman N.L.
        • Johnson R.W.
        Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress.
        Neuroimmunomodulation. 2008; 15: 323-330
        • Ng K.E.
        • Delaney P.J.
        • Thenet D.
        • Murtough S.
        • Webb C.M.
        • Zaman N.
        • Tsisanova E.
        • Mastroianni G.
        • Walker S.L.M.
        • Westaby J.D.
        • Pennington D.J.
        • Pink R.
        • Kelsell D.P.
        • Tinker A.
        Early inflammation precedes cardiac fibrosis and heart failure in desmoglein 2 murine model of arrhythmogenic cardiomyopathy.
        Cell Tissue Res. 2021; 386: 79-98
        • Williams A.J.
        • Wei H.H.
        • Dave J.R.
        • Tortella F.C.
        Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat.
        J Neuroinflamm. 2007; 4: 17
        • Bensley J.G.
        • De Matteo R.
        • Harding R.
        • Black M.J.
        The effects of preterm birth and its antecedents on the cardiovascular system.
        Acta Obstet Gynecol Scand. 2016; 95: 652-663
        • Romero R.
        • Espinoza J.
        • Gonçalves L.F.
        • Kusanovic J.P.
        • Friel L.
        • Hassan S.
        The role of inflammation and infection in preterm birth.
        Semin Reprod Med. 2007; 25: 21-39
        • Romero R.
        • Mazaki-Tovi S.
        • Vaisbuch E.
        • Kusanovic J.P.
        • Chaiworapongsa T.
        • Gomez R.
        • Nien J.K.
        • Yoon B.H.
        • Mazor M.
        • Luo J.
        • Banks D.
        • Ryals J.
        • Beecher C.
        Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery.
        J Matern Fetal Neonatal Med. 2010; 23: 1344-1359
        • Goldenberg R.L.
        • Hauth J.C.
        • Andrews W.W.
        Intrauterine infection and preterm delivery.
        N Engl J Med. 2000; 342: 1500-1507
        • Velten M.
        • Hutchinson K.R.
        • Gorr M.W.
        • Wold L.E.
        • Lucchesi P.A.
        • Rogers L.K.
        Systemic maternal inflammation and neonatal hyperoxia induces remodeling and left ventricular dysfunction in mice.
        PLoS One. 2011; 6: e24544
        • Boulanger-Bertolus J.
        • Pancaro C.
        • Mashour G.A.
        Increasing role of maternal immune activation in neurodevelopmental disorders.
        Front Behav Neurosci. 2018; 12: 230
        • Bokobza C.
        • Van Steenwinckel J.
        • Mani S.
        • Mezger V.
        • Fleiss B.
        • Gressens P.
        Neuroinflammation in preterm babies and autism spectrum disorders.
        Pediatr Res. 2019; 85: 155-165
        • Córdova E.
        • Maiolo E.
        • Corti M.
        • Orduña T.
        Neurological manifestations of Chagas disease.
        Neurol Res. 2010; 32: 238-244
        • Silva A.A.
        • Silva R.R.
        • Gibaldi D.
        • Mariante R.M.
        • dos Santos J.B.
        • Pereira I.R.
        • Moreira O.C.
        • Lannes-Vieira J.
        Priming astrocytes with TNF enhances their susceptibility to Trypanosoma cruzi infection and creates a self-sustaining inflammatory milieu.
        J Neuroinflamm. 2017; 14: 182
        • Silva A.A.
        • Roffê E.
        • Marino A.P.
        • dos Santos P.V.A.
        • Quirico-Santos T.
        • Paiva C.N.
        • Lannes-Vieira J.
        Chagas disease encephalitis: intense CD8+ lymphocytic infiltrate is restricted to the acute phase, but is not related to the presence of Trypanosoma cruzi antigens.
        Clin Immunol. 1999; 92: 56-66
        • Garzoni L.R.
        • Adesse D.
        • Soares M.J.
        • Rossi M.I.D.
        • Borojevic R.
        • de Nazareth Leal de Meirelles M.
        Fibrosis and hypertrophy induced by Trypanosoma cruzi in a three-dimensional cardiomyocyte-culture system.
        J Infect Dis. 2008; 197: 906-915
        • Higuchi Mde L.
        • Benvenuti L.A.
        • Martins Reis M.
        • Metzger M.
        Pathophysiology of the heart in Chagas' disease: current status and new developments.
        Cardiovasc Res. 2003; 60: 96-107
        • Rossi M.A.
        The pattern of myocardial fibrosis in chronic Chagas' heart disease.
        Int J Cardiol. 1991; 30: 335-340
        • Nunes M.C.P.
        • Beaton A.
        • Acquatella H.
        • Bern C.
        • Bolger A.F.
        • Echeverria L.E.
        • Dutra W.O.
        • Gascon J.
        • Morillo C.A.
        • Oliveira-Filho J.
        • Ribeiro A.L.P.
        • Marin-Neto J.A.
        Chagas cardiomyopathy: an update of current clinical knowledge and management: a scientific statement from the American Heart Association.
        Circulation. 2018; 138: e169-e209
        • Hinderer S.
        • Schenke-Layland K.
        Cardiac fibrosis – a short review of causes and therapeutic strategies.
        Adv Drug Deliv Rev. 2019; 146: 77-82
        • Bittencourt A.L.
        • Mota E.
        • Ribeiro Filho R.
        • Fernandes L.G.
        • de Almeida P.R.
        • Sherlock I.
        • Maguire J.
        • Piesman J.
        • Todd C.W.
        Incidence of congenital Chagas disease in Bahia, Brazil.
        J Trop Pediatr. 1985; 31: 242-248
        • Nisida I.V.
        • Amato Neto V.
        • Braz L.M.
        • Duarte M.I.
        • Umezawa E.S.
        A survey of congenital Chagas' disease, carried out at three health institutions in São Paulo City, Brazil.
        Rev Inst Med Trop Sao Paulo. 1999; 41: 305-311
        • Flores-Chavez M.D.
        • Merino F.J.
        • García-Bujalance S.
        • Martin-Rabadán P.
        • Merino P.
        • García-Bermejo I.
        • Delgado A.
        • Cuadros J.
        • Working Group on Chagas Disease of Autonomous Community of Madrid
        Surveillance of Chagas disease in pregnant women in Madrid, Spain from 2008 to 2010.
        Eurosurveillance. 2011; 16: 19974
        • Mayer J.P.
        • Biancardi M.
        • Altcheh J.
        • Freilij H.
        • Weinke T.
        • Liesenfeld O.
        Congenital infections with Trypanosoma cruzi or Toxoplasma gondii are associated with decreased serum concentrations of interferon-γ and interleukin-18 but increased concentrations of interleukin-10.
        Ann Trop Med Parasitol. 2010; 104: 485-492
        • Carlier Y.
        • Truyens C.
        Congenital Chagas disease as an ecological model of interactions between Trypanosoma cruzi parasites, pregnant women, placenta and fetuses.
        Acta Trop. 2015; 151: 103-115
        • Pérez M.C.
        • Alarcón M.
        • Goncalves L.
        • Lugo de Yarbuh A.
        • Moreno E.
        • Araujo S.
        • Villarreal J.
        Morphological and structural anomalies in fetuses of mice with acute experimental infection by Trypanosoma cruzi.
        Bol Malariol Salud Ambient. 2008; 48: 127-134
        • Carlier Y.
        • Rivera M.T.
        • Truyens C.
        • Puissant F.
        • Milaire J.
        Interactions between chronic murine Trypanosoma cruzi infection and pregnancy: fetal growth retardation.
        Am J Trop Med Hyg. 1987; 37: 534-540
        • de Araújo S.M.
        • Chiari E.
        Trypanosoma cruzi infection in offspring born to chagasic C3H/He mice.
        Mem Inst Oswaldo Cruz. 1996; 91: 211-216
        • Badra E.S.
        • Sala M.A.
        • Lopes R.A.
        • Prado Jr., J.C.
        • Albuquerque S.
        • Zucoloto S.
        • Carraro-Abrahão A.A.
        Histopathological changes in the placentas and fetuses of mice infected with Trypanosoma cruzi isolated from the Myotis nigricans nigricans bat.
        J Comp Pathol. 2008; 139: 108-112
        • Andrade S.G.
        The influence of the strain of Trypanosoma cruzi in placental infections in mice.
        Trans R Soc Trop Med Hyg. 1982; 76: 123-128
        • Cabeza Meckert P.
        • Chambo G.J.
        • Laguens R.P.
        Congenital disease secondary to the chronic infection of mice with Trypanosoma cruzi: experimental model of congenital Chagas disease.
        Medicina (B Aires). 1980; 40: 40-44
        • Klein M.D.
        • Proaño A.
        • Noazin S.
        • Sciaudone M.
        • Gilman R.H.
        • Bowman N.M.
        Risk factors for vertical transmission of Chagas disease: a systematic review and meta-analysis.
        Int J Infect Dis. 2021; 105: 357-373