Advertisement

Fusion Gene Detection in Prostate Cancer Samples Enhances the Prediction of Prostate Cancer Clinical Outcomes from Radical Prostatectomy through Machine Learning in a Multi-institutional Analysis

Published:January 17, 2023DOI:https://doi.org/10.1016/j.ajpath.2022.12.013
      Prostate cancer remains one of the most fatal malignancies in men in the United States. Predicting the course of prostate cancer is challenging given that only a fraction of prostate cancer patients experience cancer recurrence after radical prostatectomy or radiation therapy. In this report, the expressions of 14 fusion genes in 607 prostate cancer samples from the University of Pittsburgh, Stanford University, and the University of Wisconsin–Madison were examined. The profiling of 14 fusion genes was integrated with Gleason score of the primary pattern of prostate cancer and serum prostate-specific antigen level to develop machine-learning models to predict the recurrence of prostate cancer after radical prostatectomy. Machine-learning algorithms were developed by analysis of the data from the University of Pittsburgh cohort as a training set using the leave-one-out cross-validation method. These algorithms were then applied to the data set from the combined Stanford/Wisconsin cohort (testing set). The results showed that the addition of fusion gene profiling consistently improved the prediction rate of prostate cancer recurrence by Gleason score, serum prostate-specific antigen level, or a combination of both. These improvements occurred in both the training and testing cohorts and were corroborated by multiple models.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.L.
        • Miller K.D.
        • Fuchs H.E.
        • Jemal A.
        Cancer statistics, 2022.
        CA Cancer J Clin. 2022; 72: 7-33
        • Zhao F.
        • Wang J.
        • Chen M.
        • Chen D.
        • Ye S.
        • Li X.
        • Chen X.
        • Ren G.
        • Yan S.
        Sites of synchronous distant metastases and prognosis in prostate cancer patients with bone metastases at initial diagnosis: a population-based study of 16,643 patients.
        Clin Transl Med. 2019; 8: 30
        • Elmehrath A.O.
        • Afifi A.M.
        • Al-Husseini M.J.
        • Saad A.M.
        • Wilson N.
        • Shohdy K.S.
        • Pilie P.
        • Sonbol M.B.
        • Alhalabi O.
        Causes of death among patients with metastatic prostate cancer in the US from 2000 to 2016.
        JAMA Netw Open. 2021; 4: e2119568
        • Gleason D.F.
        • Mellinger G.T.
        Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging.
        J Urol. 1974; 111: 58-64
        • Hou G.D.
        • Zheng Y.
        • Zheng W.X.
        • Gao M.
        • Zhang L.
        • Hou N.N.
        • Yuan J.R.
        • Wei D.
        • Ju D.E.
        • Dun X.L.
        • Wang F.L.
        • Yuan J.L.
        A novel nomogram predicting the risk of positive biopsy for patients in the diagnostic gray area of prostate cancer.
        Sci Rep. 2020; 10: 17675
        • Stephenson A.J.
        • Scardino P.T.
        • Eastham J.A.
        • Bianco Jr., F.J.
        • Dotan Z.A.
        • Fearn P.A.
        • Kattan M.W.
        Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy.
        J Natl Cancer Inst. 2006; 98: 715-717
        • Zhou X.
        • Ning Q.
        • Jin K.
        • Zhang T.
        • Ma X.
        Development and validation of a preoperative nomogram for predicting survival of patients with locally advanced prostate cancer after radical prostatectomy.
        BMC Cancer. 2020; 20: 97
        • Grasso C.S.
        • Wu Y.M.
        • Robinson D.R.
        • Cao X.
        • Dhanasekaran S.M.
        • Khan A.P.
        • Quist M.J.
        • Jing X.
        • Lonigro R.J.
        • Brenner J.C.
        • Asangani I.A.
        • Ateeq B.
        • Chun S.Y.
        • Siddiqui J.
        • Sam L.
        • Anstett M.
        • Mehra R.
        • Prensner J.R.
        • Palanisamy N.
        • Ryslik G.A.
        • Vandin F.
        • Raphael B.J.
        • Kunju L.P.
        • Rhodes D.R.
        • Pienta K.J.
        • Chinnaiyan A.M.
        • Tomlins S.A.
        The mutational landscape of lethal castration-resistant prostate cancer.
        Nature. 2012; 487: 239-243
        • Tomlins S.A.
        • Rhodes D.R.
        • Perner S.
        • Dhanasekaran S.M.
        • Mehra R.
        • Sun X.W.
        • Varambally S.
        • Cao X.
        • Tchinda J.
        • Kuefer R.
        • Lee C.
        • Montie J.E.
        • Shah R.B.
        • Pienta K.J.
        • Rubin M.A.
        • Chinnaiyan A.M.
        Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer.
        Science (New York, NY). 2005; 310: 644-648
        • Luo J.H.
        • Liu S.
        • Tao J.
        • Ren B.G.
        • Luo K.
        • Chen Z.H.
        • Nalesnik M.
        • Cieply K.
        • Ma T.
        • Cheng S.Y.
        • Chen Q.
        • Michalopoulos G.K.
        • Nelson J.B.
        • Bhargava R.
        • Zhang J.
        • Ma D.
        • Jarrard D.
        • Pennathur A.
        • Luketich J.D.
        • DeFranco D.B.
        • Monga S.P.
        • Tseng G.
        • Yu Y.P.
        Pten-NOLC1 fusion promotes cancers involving MET and EGFR signalings.
        Oncogene. 2021; 40: 1064-1076
        • Yu Y.P.
        • Ding Y.
        • Chen Z.
        • Liu S.
        • Michalopoulos A.
        • Chen R.
        • Gulzar Z.G.
        • Yang B.
        • Cieply K.M.
        • Luvison A.
        • Ren B.G.
        • Brooks J.D.
        • Jarrard D.
        • Nelson J.B.
        • Michalopoulos G.K.
        • Tseng G.C.
        • Luo J.H.
        Novel fusion transcripts associate with progressive prostate cancer.
        Am J Pathol. 2014; 184: 2840-2849
        • Luo J.H.
        • Liu S.
        • Zuo Z.H.
        • Chen R.
        • Tseng G.C.
        • Yu Y.P.
        Discovery and classification of fusion transcripts in prostate cancer and normal prostate tissue.
        Am J Pathol. 2015; 185: 1834-1845
        • Yu Y.P.
        • Liu S.
        • Huo Z.
        • Martin A.
        • Nelson J.B.
        • Tseng G.C.
        • Luo J.H.
        Genomic copy number variations in the genomes of leukocytes predict prostate cancer clinical outcomes.
        PLoS One. 2015; 10: e0135982
        • Yu Y.P.
        • Song C.
        • Tseng G.
        • Ren B.G.
        • Laframboise W.
        • Michalopoulos G.
        • Nelson J.
        • Luo J.H.
        Genome abnormalities precede prostate cancer and predict clinical relapse.
        Am J Pathol. 2012; 180: 2240-2248
        • Zhao S.G.
        • Chen W.S.
        • Li H.
        • Foye A.
        • Zhang M.
        • Sjostrom M.
        • et al.
        The DNA methylation landscape of advanced prostate cancer.
        Nat Genet. 2020; 52: 778-789
        • Yu Y.P.
        • Ding Y.
        • Chen R.
        • Liao S.G.
        • Ren B.G.
        • Michalopoulos A.
        • Michalopoulos G.
        • Nelson J.
        • Tseng G.C.
        • Luo J.H.
        Whole-genome methylation sequencing reveals distinct impact of differential methylations on gene transcription in prostate cancer.
        Am J Pathol. 2013; 183: 1960-1970
        • Luo J.H.
        • Ding Y.
        • Chen R.
        • Michalopoulos G.
        • Nelson J.
        • Tseng G.
        • Yu Y.P.
        Genome-wide methylation analysis of prostate tissues reveals global methylation patterns of prostate cancer.
        Am J Pathol. 2013; 182: 2028-2036
        • Damaschke N.A.
        • Gawdzik J.
        • Avilla M.
        • Yang B.
        • Svaren J.
        • Roopra A.
        • Luo J.H.
        • Yu Y.P.
        • Keles S.
        • Jarrard D.F.
        CTCF loss mediates unique DNA hypermethylation landscapes in human cancers.
        Clin Epigenetics. 2020; 12: 80
        • Zuo Z.H.
        • Yu Y.P.
        • Ren B.G.
        • Liu S.
        • Nelson J.
        • Wang Z.
        • Tao J.
        • Pradhan-Sundd T.
        • Bhargava R.
        • Michalopoulos G.
        • Chen Q.
        • Zhang J.
        • Ma D.
        • Pennathur A.
        • Luketich J.
        • Satdarshan Monga P.
        • Nalesnik M.
        • Luo J.H.
        Oncogenic activity of solute carrier family 45 member 2 and alpha-methylacyl-coenzyme a racemase gene fusion is mediated by mitogen-activated protein kinase.
        Hepatol Commun. 2022; 6: 209-222
        • Yu Y.P.
        • Liu S.
        • Nelson J.
        • Luo J.H.
        Detection of fusion gene transcripts in the blood samples of prostate cancer patients.
        Sci Rep. 2021; 11: 16995
        • Chen Z.H.
        • Yu Y.P.
        • Tao J.
        • Liu S.
        • Tseng G.
        • Nalesnik M.
        • Hamilton R.
        • Bhargava R.
        • Nelson J.B.
        • Pennathur A.
        • Monga S.P.
        • Luketich J.D.
        • Michalopoulos G.K.
        • Luo J.H.
        Man2a1-fer fusion gene is expressed by human liver and other tumor types and has oncogenic activity in mice.
        Gastroenterology. 2017; 153: 1120-1132
        • Yu Y.P.
        • Tsung A.
        • Liu S.
        • Nalesnick M.
        • Geller D.
        • Michalopoulos G.
        • Luo J.H.
        Detection of fusion transcripts in the serum samples of patients with hepatocellular carcinoma.
        Oncotarget. 2019; 10: 3352-3360
        • Cortes C.
        • Vapnik V.
        Support-vector networks.
        Mach Learn. 1995; 20: 273-297
        • Amit Y.
        • Geman D.
        Shape quantization and recognition with randomized trees.
        Neural Comput. 1997; 9: 1545-1588
        • Bauer E.
        • Kohavi R.
        An empirical comparison of voting classification algorithms: bagging, boosting, and variants.
        Mach Learn. 1999; 36: 105-139
        • McLachlan G.J.
        Discriminant Analysis and Statistical Pattern Recognition.
        Wiley, New York, NY2004
        • Tolles J.
        • Meurer W.J.
        Logistic regression: relating patient characteristics to outcomes.
        JAMA. 2016; 316: 533-534
        • Rosenkrantz A.B.
        • Oto A.
        • Turkbey B.
        • Westphalen A.C.
        Prostate Imaging Reporting and Data System (PI-RADS), version 2: a critical look.
        AJR Am J Roentgenol. 2016; 206: 1179-1183
        • Den R.B.
        • Santiago-Jimenez M.
        • Alter J.
        • Schliekelman M.
        • Wagner J.R.
        • Renzulli Ii J.F.
        • Lee D.I.
        • Brito C.G.
        • Monahan K.
        • Gburek B.
        • Kella N.
        • Vallabhan G.
        • Abdollah F.
        • Trabulsi E.J.
        • Lallas C.D.
        • Gomella L.G.
        • Woodlief T.L.
        • Haddad Z.
        • Lam L.L.
        • Deheshi S.
        • Wang Q.
        • Choeurng V.
        • du Plessis M.
        • Jordan J.
        • Parks B.
        • Shin H.
        • Buerki C.
        • Yousefi K.
        • Davicioni E.
        • Patel V.R.
        • Shah N.L.
        Decipher correlation patterns post prostatectomy: initial experience from 2 342 prospective patients.
        Prostate Cancer Prostatic Dis. 2016; 19: 374-379
        • Makela T.P.
        • Parvin J.D.
        • Kim J.
        • Huber L.J.
        • Sharp P.A.
        • Weinberg R.A.
        A kinase-deficient transcription factor TFIIH is functional in basal and activated transcription.
        Proc Natl Acad Sci U S A. 1995; 92: 5174-5178
        • Fisher R.P.
        • Morgan D.O.
        A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase.
        Cell. 1994; 78: 713-724
        • Shiekhattar R.
        • Mermelstein F.
        • Fisher R.P.
        • Drapkin R.
        • Dynlacht B.
        • Wessling H.C.
        • Morgan D.O.
        • Reinberg D.
        CDK-activating kinase complex is a component of human transcription factor TFIIH.
        Nature. 1995; 374: 283-287
        • Andersen G.
        • Busso D.
        • Poterszman A.
        • Hwang J.R.
        • Wurtz J.M.
        • Ripp R.
        • Thierry J.C.
        • Egly J.M.
        • Moras D.
        The structure of cyclin H: common mode of kinase activation and specific features.
        EMBO J. 1997; 16: 958-967
        • Yu Y.P.
        • Liu P.
        • Nelson J.
        • Hamilton R.L.
        • Bhargava R.
        • Michalopoulos G.
        • Chen Q.
        • Zhang J.
        • Ma D.
        • Pennathur A.
        • Luketich J.
        • Nalesnik M.
        • Tseng G.
        • Luo J.H.
        Identification of recurrent fusion genes across multiple cancer types.
        Sci Rep. 2019; 9: 1074
        • Chen Z.H.
        • Yu Y.P.
        • Zuo Z.H.
        • Nelson J.B.
        • Michalopoulos G.K.
        • Monga S.
        • Liu S.
        • Tseng G.
        • Luo J.H.
        Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene.
        Nat Biotechnol. 2017; 35: 543-550