Graphical abstract

Materials and Methods
Generation of FXR1SMC/SMC Mice
Carotid Artery Ligation
VSMC Culture, Proliferation Assays
- Ray M.
- Gabunia K.
- Vrakas C.N.
- Herman A.B.
- Kako F.
- Kelemen S.E.
- Grisanti L.A.
- Autieri M.V.
β-gal and γH2AX Staining
Immunohistochemistry and Quantitative Morphology
- Ray M.
- Gabunia K.
- Vrakas C.N.
- Herman A.B.
- Kako F.
- Kelemen S.E.
- Grisanti L.A.
- Autieri M.V.
- Ray M.
- Gabunia K.
- Vrakas C.N.
- Herman A.B.
- Kako F.
- Kelemen S.E.
- Grisanti L.A.
- Autieri M.V.
Transfection, RNA Extraction, and Quantitative RT-PCR
- Ray M.
- Gabunia K.
- Vrakas C.N.
- Herman A.B.
- Kako F.
- Kelemen S.E.
- Grisanti L.A.
- Autieri M.V.
Gene | Forward primer sequence | Reverse primer sequence |
---|---|---|
Human | ||
GAPDH | 5′-CGAGAGTCAGCCGCATCTT-3′ | 5′-CCCCATGGTGTCTGAGCG-3′ |
FXR1 | 5′-GAGTTACCGCCATTGAGCTAG-3′ | 5′-ACTTTTCCAACGAGATTCCTAGG-3′ |
TNFA | 5′-GGTCTACTTTGGGATCATTGC-3′ | 5′-GAAGAGGTTGAGGGTGTCTG-3′ |
CDK1 | 5′-ACAAAGGAACAATTAAACTGGCTG-3′ | 5′-CTGGAGTTGAGTAACGAGCTG-3′ |
LIN9 | 5′-GACTGAACAAGGACCTAAACAAAG-3′ | 5′-CATGCCGAACAATTTCCTGTG-3′ |
BUB1 | 5′-CCGAGTCTCAGAAAATACCAGG-3′ | 5′-AAATGGAGAAAGGTACACTGGG-3′ |
GJA5 | 5′-GTTTTGGCATCTGTTCCCTG-3′ | 5′-CGGAATATGAAGAGGACAGTGAG-3′ |
CD93 | 5′-CAGACAGTTACTCCTGGGTTC-3′ | 5′-GTGGCTGGTGACTCTAGTG-3′ |
MKI67 | 5′-GACCCAGCACTCCAAAGAAA-3′ | 5′-TCTGCGCTCTACCTACTACAA-3′ |
CDKN3 | 5′-GCCAGCTGCTGTGAAATAATG-3′ | 5′-GTAGGAGACAAGCAGCTACAAG-3′ |
HMGB1 | 5′-GAATCTCTATGTTGCCCAGGT T-3′ | 5′-CAGTGGTGTGTCCCTGTAATC-3′ |
IL8 | 5′-CCAGGAAGAAACCACCGGA-3′ | 5′-GAAATCAGGAAGGCTGCCAAG-3′ |
IL1A | 5′-CTGAAGGAGATGCCTGAGATAC-3′ | 5′-GATGGGCAACTGATGTGAAATAG-3′ |
IL6 | 5′-CCAGGAGAAGATTCCAAAGATGTA-3′ | 5′-CGTCGAGGATGTACCGAATTT-3′ |
IL1B | 5′-TCCCCAGCCCTTTTGTTGA-3′ | 5′-TTAGAACCAAATGTGGCCGTG-3′ |
MMP9 | 5′-GAACTTTGACAGCGACAAGAAG-3′ | 5′-CGGCACTGAGGAATGATCTAA-3′ |
CXCL11 | 5′-GTGTGAAGGGCATGGCTATAG-3′ | 5′-CACTTTCACTGCTTTTACCCC-3′ |
HMGB2 | 5′-GAAGTGTTCGGAGAGATGGAAG-3′ | 5′-CACCTTTGGGAGGAACGTAAT-3′ |
MCP1 | 5′-AGCAGAAGTGGGTTCAGGATT-3′ | 5′-TGTGGAGTGAGTGTTCAAGTCT-3′ |
Mouse | ||
Gapdh | 5′-GGAGAAACCTGCCAAGTATGA-3′ | 5′-TCCTCAGTGTAGCCCAAGA-3′ |
Fxr1 | 5′-GAACGCATGGCACTAACATAC-3′ | 5′-CACAAATTCCAAGAAACCTCTAGC-3′ |
Cdk1 | 5′-TTGAAGAGGCAACCGAGTAAG-3′ | 5′-GGCGTTAGGTCATCCATCAA-3′ |
Cdkn3 | 5′-GACTTGGAAGATCCTGTCTTGT-3′ | 5′-GACATCTCGAAGGCTGTCTATG-3′ |
Bub1 | 5′-CCCTGGAGTAGGAAGCTAGT-3′ | 5′-ATGGTGGTCTCACAACAAGAA-3′ |
Mki67 | 5′-GACCCAGCACTCCAAAGAAA-3′ | 5′-TCTGCGCTCTACCTACTACAA-3′ |
Cdkn2a (p16) | 5′-GTGTGCATGACGTGCGGG-3′ | 5′-GCAGTTCGAATCTGCACCGTAG-3′ |
Cdkn1a (p21) | 5′-AACATCTCAGGGCCGAAA-3′ | 5′-TGCGCTTGGAGTGATAGAAA-3′ |
Trp53 (p53) | 5′-GTATTTCACCCTCAAGATCC-3′ | 5′-TGGGCATCCTTTAACTCTA-3′ |
Hmgb1 | 5′-CCCTACTAAAGAAGACCTGAGAATG-3′ | 5′-AGCCAGCGTTCTTGTGATAG-3′ |
Adenoviral Knockout of FXR1
RNA Sequencing
RNA Immunoprecipitation
Western Blotting and Protein Determination
- Ray M.
- Gabunia K.
- Vrakas C.N.
- Herman A.B.
- Kako F.
- Kelemen S.E.
- Grisanti L.A.
- Autieri M.V.
Statistics
Results
Depletion of FXR1 Modifies Abundance of Proliferation-Associated Transcripts

Gene ID | Gene name | log2FoldChange | P value |
---|---|---|---|
ENSG00000169607 | CKAP2L | −1.81 | 0.18 |
ENSG00000274290 | HIST1H2BE | −1.83 | 0.01 |
ENSG00000024526 | DEPDC1 | −1.83 | 0.009 |
ENSG00000142945 | KIF2C | −1.85 | 0.011 |
ENSG00000072571 | HMMR | −1.87 | 0.01 |
ENSG00000123485 | HJURP | −1.9 | 0.02 |
ENSG00000100526 | CDKN3 | −1.91 | 0.04 |
ENSG00000164109 | MAD2L1 | −1.92 | 0.01 |
ENSG00000138160 | KIF11 | −1.93 | 0.01 |
ENSG00000129195 | PIMREG | −1.93 | 0.03 |
ENSG00000170312 | CDK1 | −1.94 | 0.01 |
ENSG00000137812 | KNL1 | −1.95 | 0.01 |
ENSG00000066279 | ASPM | −1.97 | 0.01 |
ENSG00000276903 | HIST1H2AL | −1.97 | 0.02 |
ENSG00000124575 | HIST1H1D | −2.02 | 0.01 |
ENSG00000274641 | HIST1H2BO | −2.03 | 0.01 |
ENSG00000278272 | HIST1H3C | −2.05 | 0.01 |
ENSG00000197153 | HIST1H3J | −2.05 | 0.02 |
ENSG00000276410 | HIST1H2BB | −2.07 | 0.01 |
ENSG00000138778 | CENPE | −2.08 | 0.01 |
ENSG00000183598 | HIST2H3D | −2.1 | 0.01 |
ENSG00000080986 | NDC80 | −2.11 | 0.01 |
ENSG00000125810 | CD93 | −2.15 | 0.01 |
ENSG00000183814 | LIN9 | −2.18 | 0.04 |
ENSG00000073849 | ST6GAL1 | −2.19 | 0.01 |
ENSG00000117399 | CDC20 | −2.2 | 0.01 |
ENSG00000175063 | UBE2C | −2.22 | 0.02 |
ENSG00000169679 | BUB1 | −2.27 | 0.01 |
ENSG00000163535 | SGO2 | −2.28 | 0.01 |
ENSG00000112984 | KIF20A | −2.29 | 0 |
ENSG00000158402 | CDC25C | −2.32 | 0.04 |
ENSG00000148773 | MKI67 | −2.36 | 0.01 |
ENSG00000112742 | TTK | −2.47 | 0 |

FXR1 Interacts with Proliferation-Associated mRNA Transcripts

Depletion of FXR1 Induces Senescence and Senescence-Associated Secretory Phenotype Expression in VSMC


Genetic Deletion of FXR1 from VSMC Reduces Neointima Formation


Deletion of FXR1 Induces VSMC Senescence in Vivo

Discussion
- Chinami M.
- Yano Y.
- Yang X.
- Salahuddin S.
- Moriyama K.
- Shiroishi M.
- Turner H.
- Shirakawa T.
- Adra C.N.
References
- Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis.Circulation. 2014; 129: 1551-1559
- Thematic review series: the immune system and atherogenesis. Cytokines affecting endothelial and smooth muscle cells in vascular disease.J Lipid Res. 2005; 46: 1081-1092
- Atherosclerosis--an inflammatory disease.N Engl J Med. 1999; 340: 115-126
- Modulation of mRNA stability as a novel therapeutic approach.Pharmacol Ther. 2007; 114: 56-73
- Regulation of cytoplasmic mRNA decay.Nat Rev Genet. 2012; 13: 246-259
- The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules.Nat Immunol. 2009; 10: 281-288
- Post-transcriptional control of cytokine production.Nat Immunol. 2008; 9: 353-359
- Intrinsic mRNA stability helps compose the inflammatory symphony.Nat Immunol. 2009; 10: 233-234
- AU-rich elements and associated factors: are there unifying principles?.Nucleic Acids Res. 2005; 33: 7138-7150
- The Fragile X mental retardation protein.Brain Res Bull. 2001; 56: 375-382
- FXR1, an autosomal homolog of the fragile X mental retardation gene.EMBO J. 1995; 14: 2401-2408
- Fragile X-related protein FXR1P regulates proinflammatory cytokine tumor necrosis factor expression at the post-transcriptional level.J Biol Chem. 2005; 280: 5750-5763
- Fxr1 knockout mice show a striated muscle phenotype: implications for Fxr1p function in vivo.Hum Mol Genet. 2004; 13: 1291-1302
- FXR1 is an IL-19-responsive RNA-binding protein that destabilizes pro-inflammatory transcripts in vascular smooth muscle cells.Cell Rep. 2018; 24: 1176-1189
- G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension.Nat Med. 2008; 14: 64-68
- Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse.Dev Biol. 2002; 244: 305-318
- Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes.Lab Anim Res. 2018; 34: 147-159
- IL-19 reduces ligation-mediated neointimal hyperplasia by reducing vascular smooth muscle cell activation.Am J Pathol. 2014; 184: 2134-2143
- Induction of MiR133a expression by IL-19 targets LDLRAP1 and reduces oxLDL uptake in VSMC.J Mol Cell Cardiol. 2017; 105: 38-48
- Expression and suppressive effects of interleukin-19 on vascular smooth muscle cell pathophysiology and development of intimal hyperplasia.Am J Pathol. 2008; 173: 901-909
- Genetic deletion of IL-19 (interleukin-19) exacerbates atherogenesis in Il19-/-×Ldlr-/- double knockout mice by dysregulation of mRNA stability protein HuR (human antigen R).Arterioscler Thromb Vasc Biol. 2018; 38: 1297-1308
- Overexpression of allograft inflammatory factor-1 promotes proliferation of vascular smooth muscle cells by cell cycle deregulation.Arterioscler Thromb Vasc Biol. 2001; 21: 1421-1426
- Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility.AJP Cell Physiol. 2011; 300: C896-C906
- Attenuation of experimental atherosclerosis by interleukin-19.Arterioscler Thromb Vasc Biol. 2013; 33: 2316-2324
- Inhibition of allograft inflammatory factor-1 expression reduces development of neointimal hyperplasia and p38 kinase activity.Cardiovasc Res. 2009; 81: 206-215
- Il-19 reduces VSMC activation by regulation of mRNA regulatory factor HuR and reduction of mRNA stability.J Mol Cell Cardiol. 2010; 49: 647-654
- The adenosine-uridine binding factor recognizes the AU-rich elements of cytokine, lymphokine, and oncogene mRNAs.J Biol Chem. 1991; 266: 3172-3177
- Number and location of AUUUA motifs: role in regulating transiently expressed RNAs.Blood. 1994; 83: 3182-3187
- ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins.Nucleic Acids Res. 2001; 29: 246-254
- AREsite2: an enhanced database for the comprehensive investigation of AU/GU/U-rich elements.Nucleic Acids Res. 2016; 44: D90-D95
- A biomarker that identifies senescent human cells in culture and in aging skin in vivo.Proc Natl Acad Sci U S A. 1995; 92: 9363-9367
- Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks.Nat Cell Biol. 2004; 6: 168-170
- Cellular senescence: mechanisms and therapeutic potential.Biomedicines. 2021; 9: 1769
- Mouse models of arteriosclerosis: from arterial injuries to vascular grafts.Am J Pathol. 2004; 165: 1-10
- Strain-dependent vascular remodeling phenotypes in inbred mice.Am J Pathol. 2000; 156: 1741-1748
- Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis.Cardiovasc Res. 1998; 39: 8-33
- Bub1 regulates chromosome segregation in a kinetochore-independent manner.J Cell Biol. 2009; 185: 841-858
- Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1.Dev Cell. 2007; 13: 663-676
- Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition.J Biol Chem. 2010; 285: 16978-16990
- Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome.J Cell Sci. 2009; 122: 2240-2251
- Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2.Cell. 1993; 75: 791-803
- Binding of HTm4 to cyclin-dependent kinase (Cdk)-associated phosphatase (KAP).Cdk2.cyclin A complex enhances the phosphatase activity of KAP, dissociates cyclin A, and facilitates KAP dephosphorylation of Cdk2.J Biol Chem. 2005; 280: 17235-17242
- Ki-67 acts as a biological surfactant to disperse mitotic chromosomes.Nature. 2016; 535: 308-312
- Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery.Elife. 2014; 3: e01641
- Fragile X-related protein FXR1 controls post-transcriptional suppression of lipopolysaccharide-induced tumour necrosis factor-alpha production by transforming growth factor-beta1.FEBS J. 2010; 277: 2754-2765
- The RNA-binding protein FXR1 modulates prostate cancer progression by regulating FBXO4.Funct Integr Genomics. 2019; 19: 487-496
- Increased cardiac arrhythmogenesis associated with gap junction remodeling with upregulation of RNA-binding protein FXR1.Circulation. 2018; 137: 605-618
- circNRIP1 facilitates keloid progression via FXR1-mediated upregulation of miR-503-3p and miR-503-5p.Int J Mol Med. 2021; 47: 70
- Fragile X related protein 1 (FXR1P) regulates proliferation of adult neural stem cells.Hum Mol Genet. 2017; 26: 1340-1352
- FXR1: linking cellular quiescence, immune genes and cancer.Cell Cycle. 2016; 15: 2695-2696
- Senescent vascular smooth muscle cells drive inflammation through an interleukin-1α-dependent senescence-associated secretory phenotype.Arterioscler Thromb Vasc Biol. 2015; 35: 1963-1974
- Cellular senescence: from physiology to pathology.Nat Rev Mol Cell Biol. 2014; 15: 482-496
- Role of smooth muscle cells in the initiation and early progression of atherosclerosis.Arterioscler Thromb Vasc Biol. 2008; 28: 812-819
- Molecular determinants of atherosclerotic plaque vulnerability.Ann N Y Acad Sci. 1997; 811 (discussion 142-145): 134-142
- Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis.Cardiovasc Res. 2018; 114: 622-634
- A novel role for the RNA-binding protein FXR1P in myoblasts cell-cycle progression by modulating p21/Cdkn1a/Cip1/Waf1 mRNA stability.PLoS Genet. 2013; 9: e1003367
Article info
Publication history
Footnotes
Supported by NIH National Heart, Lung, and Blood Institute grants HL141108 and HL117724 (M.V.A.).
Disclosures: None declared.
Presented in abstract form at the American Heart Association Scientific Sessions, Philadelphia, PA (November 16–18, 2019) and ATVB Vascular Discovery, Seattle, WA (May 12–14, 2022).
Identification
Copyright
ScienceDirect
Access this article on ScienceDirectLinked Article
- This Month in AJPThe American Journal of PathologyVol. 193Issue 5
- PreviewThe role of transient receptor potential vanilloid 1 (TRPV1) ion channels in diabetic gastroparesis (DGP) is unclear. Using high-fat diet–induced DGP mice, Xu and Liang et al (Am J Pathol 2023, 548–557) studied this role. TRPV1 activation facilitated gastric fundus relaxation by regulating neuronal nitric oxide synthase and promoting nitric oxide release in normal mice. However, these effects and associated mechanisms disappeared in high-fat diet–induced DGP mice. TRPV1 dysfunction may contribute toward dysfunction of DGP gastric nitrergic neuromuscular relaxation.
- Full-Text
- Preview