Advertisement

Vitamin D and Microbiome

Molecular Interaction in Inflammatory Bowel Disease Pathogenesis
      Studies of systemic autoimmune diseases point to characteristic microbial patterns in various diseases, including inflammatory bowel disease (IBD). Autoimmune diseases, and IBD in particular, show a predisposition to vitamin D deficiency, leading to alterations in the microbiome and disruption of intestinal epithelial barrier integrity. In this review, we examine the role of the gut microbiome in IBD and discuss how vitamin D–vitamin D receptor (VDR)–associated molecular signaling pathways contribute to the development and progression of IBD through their effects on gut barrier function, the microbial community, and immune system function. The present data demonstrate that vitamin D promotes the proper function of the innate immune system by acting as an immunomodulator, exerting anti-inflammatory effects, and critically contributing to the maintenance of gut barrier integrity and modulation of the gut microbiota, mechanisms that may influence the IBD development and progression. VDR regulates the biological effects of vitamin D and is related to environmental, genetic, immunologic, and microbial aspects of IBD. Vitamin D influences the distribution of the fecal microbiota, with high vitamin D levels associated with increased levels of beneficial bacterial species and lower levels of pathogenic bacteria. Understanding the cellular functions of vitamin D–VDR signaling in intestinal epithelial cells may pave the way for the development of new treatment strategies for the therapeutic armamentarium of IBD in the near future.

      Graphical abstract

      In autoimmune reactions, the immune system reacts against the body's own antigens, causing cell and tissue damage.
      • Hayter S.M.
      • Cook M.C.
      Updated assessment of the prevalence, spectrum and case definition of autoimmune disease.
      Crohn disease (CD) and ulcerative colitis (UC) are two chronic diseases characterized by chronic inflammation in the gastrointestinal tract and are referred to as inflammatory bowel disease (IBD). Although the exact cause of IBD remains unclear, significant progress has been made in recent years in deciphering the pathophysiology of these diseases. Over the past decade, IBD has become a global public health challenge,
      • Kaplan G.G.
      The global burden of IBD: from 2015 to 2025.
      and its prevalence and incidence are increasing significantly, making it one of the most common gastrointestinal tract diseases.
      • Ng S.C.
      • Shi H.Y.
      • Hamidi N.
      • Underwood F.E.
      • Tang W.
      • Benchimol E.I.
      • Panaccione R.
      • Ghosh S.
      • Wu J.C.Y.
      • Chan F.K.L.
      • Sung J.J.Y.
      • Kaplan G.G.
      Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies.
      The pathogenesis and development of IBD include impaired regulation of immune responses, environmental changes, and disease-related genetic alterations.
      • Zhang Y.Z.
      • Li Y.Y.
      Inflammatory bowel disease: pathogenesis.
      ,
      • Geremia A.
      • Biancheri P.
      • Allan P.
      • Corazza G.R.
      • Di Sabatino A.
      Innate and adaptive immunity in inflammatory bowel disease.
      In the pathology of IBD, alterations in the gut microbiota are a common feature; however, it is not clear whether these alterations are the cause or consequence of gut inflammation and how these bacterial communities contribute to the pathogenesis of IBD.
      • Rosen C.E.
      • Palm N.W.
      Navigating the microbiota seas: triangulation finds a way forward.
      Epigenetics may partially explain how the exposome may modulate gene expression and contribute to the development of gut inflammation.
      • Vieujean S.
      • Caron B.
      • Haghnejad V.
      • Jouzeau J.Y.
      Impact of the exposome on the epigenome in inflammatory bowel disease patients and animal models.
      Several features of the exposome, including the gut microbiota and vitamin D, may enhance epigenetic alterations associated with IBD.
      • Vieujean S.
      • Caron B.
      • Haghnejad V.
      • Jouzeau J.Y.
      Impact of the exposome on the epigenome in inflammatory bowel disease patients and animal models.
      Patients with IBD are at high risk for osteopenia and osteoporosis and usually have calcium and/or vitamin D malabsorption and altered dietary intake.
      • Triantos C.
      • Aggeletopoulou I.
      • Mantzaris G.J.
      • Mouzaki A.
      Molecular basis of vitamin D action in inflammatory bowel disease.
      Vitamin D malabsorption has been associated with inadequate sunlight exposure, deficient enzymatic activation, decreased bioavailability, increased catabolism or excretion, inadequate exercise, and smoking.
      • Mouli V.P.
      • Ananthakrishnan A.N.
      Review article: vitamin D and inflammatory bowel diseases.
      Vitamin D exerts a variety of effects on the immune system, including regulation of immune modulation, cell proliferation and differentiation, and maintenance of intestinal homeostasis.
      • Hossein-nezhad A.
      • Holick M.F.
      Vitamin D for health: a global perspective.
      ,
      • Battault S.
      • Whiting S.J.
      • Peltier S.L.
      • Sadrin S.
      • Gerber G.
      • Maixent J.M.
      Vitamin D metabolism, functions and needs: from science to health claims.
      Recent evidence supports a critical role for vitamin D in IBD, as vitamin D deficiency is inversely related to disease activity.
      • Vernia F.
      • Valvano M.
      • Longo S.
      • Cesaro N.
      • Viscido A.
      • Latella G.
      Vitamin D in inflammatory bowel diseases. mechanisms of action and therapeutic implications.
      In parallel, vitamin D–associated vitamin D receptor (VDR) signaling has been shown to regulate immunity to gut pathogens and maintain gut barrier integrity, demonstrating a potential role in IBD pathogenesis.
      • Vernia F.
      • Valvano M.
      • Longo S.
      • Cesaro N.
      • Viscido A.
      • Latella G.
      Vitamin D in inflammatory bowel diseases. mechanisms of action and therapeutic implications.
      ,
      • Damoiseaux J.
      • Smolders J.
      The engagement between vitamin D and the immune system: is consolidation by a marriage to be expected?.
      This has attracted considerable attention because of its potential pathogenic impact on IBD progression.
      • Triantos C.
      • Aggeletopoulou I.
      • Mantzaris G.J.
      • Mouzaki A.
      Molecular basis of vitamin D action in inflammatory bowel disease.
      The human microbiome in the gastrointestinal tract consists of a community of commensal, symbiotic, and pathogenic microorganisms that live in the human body.
      • Shreiner A.B.
      • Kao J.Y.
      • Young V.B.
      The gut microbiome in health and in disease.
      This population directly or indirectly influences human physiology by contributing to metabolic functions, protecting against pathogens, and modulating the immune system.
      • Gomez A.
      • Luckey D.
      • Taneja V.
      The gut microbiome in autoimmunity: sex matters.
      The microbiome is of great importance in autoimmune responses under the concept of molecular mimicry, in which microbial peptides have a similar structure and sequence to self-antigens, resulting in immune cell autoreactivity.
      • Yamamoto E.A.
      • Jørgensen T.N.
      Relationships between vitamin D, gut microbiome, and systemic autoimmunity.
      There is growing evidence that vitamin D/VDR-mediated signaling ameliorates both clinical
      • Gubatan J.
      • Chou N.D.
      • Nielsen O.H.
      • Moss A.C.
      Systematic review with meta-analysis: association of vitamin D status with clinical outcomes in adult patients with inflammatory bowel disease.
      ,
      • van der Post S.
      • Jabbar K.S.
      • Birchenough G.
      • Arike L.
      • Akhtar N.
      • Sjovall H.
      • Johansson M.E.V.
      • Hansson G.C.
      Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis.
      and experimental IBD.
      • Li Y.C.
      • Chen Y.
      • Du J.
      Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation.
      ,
      • Zhu W.
      • Yan J.
      • Zhi C.
      • Zhou Q.
      • Yuan X.
      1,25(OH)(2)D(3) deficiency-induced gut microbial dysbiosis degrades the colonic mucus barrier in Cyp27b1 knockout mouse model.
      Impaired VDR signaling has been associated with the mucosal inflammation and damage observed in patients with IBD; however, the question of whether impaired VDR signaling causes IBD or whether IBD is the consequence of this impairment has not yet been answered.
      • Fletcher J.
      • Cooper S.C.
      • Ghosh S.
      • Hewison M.
      The role of vitamin D in inflammatory bowel disease: mechanism to management.
      This review presents advances in the molecular mechanisms linking the gut microbiome and IBD, as well as recent findings on the interaction between vitamin D and the gut microbiome and how this relationship influences IBD pathogenesis and progression. Emphasis will be placed on preclinical experimental IBD models and translational data on clinical IBD.

      Biosynthesis, Physiology, and Metabolism of Vitamin D

      Vitamin D was first referred to as a vitamin, but it is actually a fat-soluble steroid hormone that occurs in two different isoforms, vitamin D2 (ergocalciferol, mainly derived from plants) and vitamin D3 (cholecalciferol, mainly derived from animals) (Figure 1A). Both are synthesized endogenously in the skin by exposure to UVB and by conversion of 7-dehydrocholesterol to previtamin D3 and subsequent isomerization, or they are absorbed in the small intestine.
      • Triantos C.
      • Aggeletopoulou I.
      • Thomopoulos K.
      • Mouzaki A.
      Vitamin D - liver disease association: biological basis and mechanisms of action.
      These isoforms are considered biologically inactive until enzymatically hydroxylated.
      • Hossein-nezhad A.
      • Holick M.F.
      Vitamin D for health: a global perspective.
      Vitamin D binds to vitamin D–binding protein; this complex is transferred to the liver and converted to the circulating form 25-hydroxyvitamin D by the 25-hydroxylase cytochrome P450, family 2, subfamily R, polypeptide 1.
      • Hossein-nezhad A.
      • Holick M.F.
      Vitamin D for health: a global perspective.
      ,
      • Battault S.
      • Whiting S.J.
      • Peltier S.L.
      • Sadrin S.
      • Gerber G.
      • Maixent J.M.
      Vitamin D metabolism, functions and needs: from science to health claims.
      25-Hydroxyvitamin D is the most abundant circulating vitamin D metabolite. It is then converted to the biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], by sequential hydroxylation by the mitochondrial cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) in the kidney
      • Hossein-nezhad A.
      • Holick M.F.
      Vitamin D for health: a global perspective.
      ,
      • Battault S.
      • Whiting S.J.
      • Peltier S.L.
      • Sadrin S.
      • Gerber G.
      • Maixent J.M.
      Vitamin D metabolism, functions and needs: from science to health claims.
      Renal CYP27B1 activity is essential for the production and maintenance of normal concentrations of circulating 1,25(OH)2D3. CYP27B1 production and activity are tightly regulated by endocrine factors induced in response to changes in plasma calcium and/or phosphorus; the major factors associated with CYP27B1 activity are parathyroid hormone and fibroblast growth factor 23 (FGF23).
      • Pike J.W.
      • Christakos S.
      Biology and mechanisms of action of the vitamin D hormone.
      The release of parathyroid hormone is induced in response to hypocalcemia and is the major activator of the biologically active form of vitamin D.
      • Khundmiri S.J.
      • Murray R.D.
      • Lederer E.
      PTH and vitamin D.
      The transmembrane receptor Klotho is critical for FGF23, another important modulator of vitamin D metabolism, to exert its effects in the kidney.
      • Quarles L.D.
      Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism.
      In the presence of Klotho, FGF23 induces downstream signaling pathways to modulate phosphate homeostasis.
      • Quarles L.D.
      Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism.
      The vitamin D endocrine circuit may be involved in a feedback mechanism by which 1,25(OH)2D3 inhibits the expression of CYP27B1 in the kidney, down-regulates the production of parathyroid hormone by the parathyroid gland, and up-regulates FGF23 via the skeletal system.
      • Jones G.
      • Prosser D.E.
      • Kaufmann M.
      Cytochrome P450-mediated metabolism of vitamin D.
      Similarly, FGF23 acts via a negative feedback mechanism in the kidney to down-regulate CYP27B1 and in the parathyroid gland to inhibit parathyroid hormone.
      • Clinkenbeard E.L.
      • White K.E.
      Systemic control of bone homeostasis by FGF23 signaling.
      Figure thumbnail gr1
      Figure 1A: Vitamin D biosynthesis and metabolism. B: Vitamin D–vitamin D receptor (VDR) signaling axis. C: Vitamin D action in innate and adaptive immune responses. 1,25(OH)2D3, 1α,25-dihydroxyvitamin D3; 25(OH)D, 25-hydroxyvitamin D; CD40L, CD40 ligand; CYP27A1, cytochrome P450, family 27, subfamily A, polypeptide 1; CYP27B1, cytochrome P450, family 27, subfamily B, polypeptide 1; CYP2R1, cytochrome P450, family 2, subfamily R, polypeptide 1; DC, dendritic cell; DHCR7, 7-dehydrocholesterol reductase; IFN-γ, interferon-γ; MARK, microtubule affinity-regulating kinase; MHC, major histocompatibility complex; ROS, reactive oxygen species; RXR, retinoid X receptor; TCR, T-cell receptor; Th1, type 1 helper T cell; Th17, type 17 helper T cell; Th2, type 2 helper T cell; TLR, toll-like receptor; TNF-α, tumor necrosis factor-α; Treg, T regulatory cell; VDRE, vitamin D response element.
      In parallel, the role of vitamin D in modulating the immune system and maintaining the homeostasis of the intestinal barrier and the composition of the gut microbiota has received increasing attention.
      • Fakhoury H.M.A.
      • Kvietys P.R.
      • AlKattan W.
      • Anouti F.A.
      • Elahi M.A.
      • Karras S.N.
      • Grant W.B.
      Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation.
      In particular, vitamin D contributes directly to the modulation of the innate immune response by exerting its effect on the proper function of monocytes, macrophages, and dendritic cells and the resulting secretion of cytokines. In addition, vitamin D influences the adaptive immune response, including the development and progression of various autoimmune diseases, by regulating the activation, proliferation, and differentiation of T and B cells.
      • Wu Z.
      • Liu D.
      • Deng F.
      The role of vitamin D in immune system and inflammatory bowel disease.

      Vitamin D Receptor

      One of the most important actions of vitamin D is the regulation of gene expression in certain tissues; this action is mediated by VDR, a ligand-activated transcription factor that belongs to the nuclear receptor superfamily
      • Carlberg C.
      • Campbell M.J.
      Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor.
      and is expressed on almost all immune cells.
      • Carlberg C.
      Vitamin D genomics: from in vitro to in vivo.
      VDR interacts directly with regulatory sequences near target genes and recruits chromatin-active complexes that contribute to genetic and epigenetic modifications of transcriptional output.
      • Pike J.W.
      • Christakos S.
      Biology and mechanisms of action of the vitamin D hormone.
      The active form of vitamin D binds to VDR and induces its activation, directly modulating regulation of target genes (Figure 1B).
      • Haussler M.R.
      • Haussler C.A.
      • Bartik L.
      • Whitfield G.K.
      • Hsieh J.C.
      • Slater S.
      • Jurutka P.W.
      Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention.
      Vitamin D–related target genes include genes closely associated with various cellular processes.
      • Pike J.W.
      • Christakos S.
      Biology and mechanisms of action of the vitamin D hormone.
      VDR is highly expressed in healthy intestinal epithelial cells (IECs)
      • Wu S.
      • Liao A.P.
      • Xia Y.
      • Li Y.C.
      • Li J.D.
      • Sartor R.B.
      • Sun J.
      Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine.
      with a surface-to-crypt gradient, and the highest VDR expression is found in the crypts.
      • Wu S.
      • Liao A.P.
      • Xia Y.
      • Li Y.C.
      • Li J.D.
      • Sartor R.B.
      • Sun J.
      Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine.
      Therefore, the biological functions of vitamin D are directly associated with 1,25(OH)2D3-dependent changes in the transcriptome in VDR-expressing cells.
      • Campbell M.J.
      Vitamin D and the RNA transcriptome: more than mRNA regulation.
      On activation by vitamin D, a conformational rearrangement of VDR occurs, allowing heterodimerization of VDR with the retinoid X receptor. The VDR–retinoid X receptor complex is translocated to the nucleus, binds to specific genomic sequences (vitamin D response elements) in the promoter of various genes, and modulates their transcription.
      • Udomsinprasert W.
      • Jittikoon J.
      Vitamin D and liver fibrosis: molecular mechanisms and clinical studies.
      There is growing evidence that vitamin D is an important modulator of the immune system that can directly influence both innate and adaptive immune responses. Considering that VDR is expressed in almost all immune cells,
      • Sassi F.
      • Tamone C.
      • D'Amelio P.
      Vitamin D: nutrient, hormone, and immunomodulator.
      it is hardly surprising that vitamin D is closely associated with immune modulation and the development of autoimmune diseases, including IBD.

      Physiological Functions of the Gut Microbiome

      The epithelium of the gut is in close contact with the gut microbial community, revealing a commensal and/or mutualistic dynamic interaction. The gut microbiome has important metabolic, immunologic, and protective functions. Regarding its role in metabolism, the microbiome can break down otherwise indigestible food components, degrade potentially toxic food components, and synthesize certain metabolites, including vitamins, amino acids, and short-chain fatty acids, such as butyrate, acetate, and propionate, which provide energy to the intestinal epithelium.
      • Jandhyala S.M.
      • Talukdar R.
      • Subramanyam C.
      • Vuyyuru H.
      • Sasikala M.
      • Nageshwar Reddy D.
      Role of the normal gut microbiota.
      In parallel, the gut microbiome produces vitamins K and B, niacin, biotin, and folic acid, and it contributes to the enterohepatic cycling of bile acids.
      • Morowitz M.J.
      • Carlisle E.
      • Alverdy J.C.
      Contributions of intestinal bacteria to nutrition and metabolism in the critically Ill.
      It also regulates gut immunity by interacting with adaptive and innate immune responses through the production of microbial-associated molecular patterns.
      • Becattini S.
      • Taur Y.
      • Pamer E.G.
      Antibiotic-induced changes in the intestinal microbiota and disease.
      Finally, the gut microbiome inhibits the development of potentially pathogenic bacteria by preventing their access to nutrients and receptors, synthesizing antimicrobial factors, and resisting colonization.
      • Pickard J.M.
      • Zeng M.Y.
      • Caruso R.
      • Núñez G.
      Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease.

      Composition of the Gut Microbiome

      The development of an inflammatory response in the gut is hindered by the mucosal layer and gut epithelium, which prevent the invasion of bacteria or their products into the interstitial space.
      • Kvietys P.R.
      • Yaqinuddin A.
      • Al Kattan W.
      Gastrointestinal mucosal defense system: colloquium series on integrated systems physiology.
      Impairments of the mucosal layer and gut epithelium are closely related to the pathogenesis of IBD.
      • Schroeder B.O.
      Fight them or feed them: how the intestinal mucus layer manages the gut microbiota.
      The development of dysbiosis of the gut microbiota and the entry of immunogenic products into the interstitial space activate the immune system, potentially leading to the development and progression of IBD.
      • Holleran G.
      • Lopetuso L.
      • Petito V.
      The innate and adaptive immune system as targets for biologic therapies in inflammatory bowel disease.
      The lumen of the human gut, particularly the colon, contains a complex ecosystem of microorganisms, including bacteria, fungi, parasites, viruses, and archaea that live in symbiosis and are referred to as the gut microbiota.
      • Sommer F.
      • Bäckhed F.
      The gut microbiota - masters of host development and physiology.
      ,
      • Aggeletopoulou I.
      • Konstantakis C.
      • Assimakopoulos S.F.
      • Triantos C.
      The role of the gut microbiota in the treatment of inflammatory bowel diseases.
      The amount and composition of the gut microbiota vary throughout the gastrointestinal tract.
      • Aggeletopoulou I.
      • Konstantakis C.
      • Assimakopoulos S.F.
      • Triantos C.
      The role of the gut microbiota in the treatment of inflammatory bowel diseases.
      The gastrointestinal microbiota is predominantly composed of bacteria from four different bacterial phyla (namely, Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria).
      • Ley R.E.
      • Hamady M.
      • Lozupone C.
      • Turnbaugh P.J.
      • Ramey R.R.
      • Bircher J.S.
      • Schlegel M.L.
      • Tucker T.A.
      • Schrenzel M.D.
      • Knight R.
      • Gordon J.I.
      Evolution of mammals and their gut microbes.
      The gut microbiome encodes approximately 3 million genes and is estimated to harbor 100 times more genes than the host. The presence of a dysbiotic microbiota can lead to a loss of immunoregulatory action on the intestinal mucosa, resulting in a range of inflammatory and immune-mediated diseases.
      • Aggeletopoulou I.
      • Konstantakis C.
      • Assimakopoulos S.F.
      • Triantos C.
      The role of the gut microbiota in the treatment of inflammatory bowel diseases.
      ,
      • Manichanh C.
      • Borruel N.
      • Casellas F.
      • Guarner F.
      The gut microbiota in IBD.

      Composition of the Gut Microbiome in IBD

      Over the past decade, a decline in the diversity of species composing the microbiome has been demonstrated in stool samples, associated with changes in inflamed mucosal tissues.
      • Manichanh C.
      • Borruel N.
      • Casellas F.
      • Guarner F.
      The gut microbiota in IBD.
      In addition, adherent-invasive bacteria, such as Escherichia coli (phylum: Proteobacteria) and Fusobacterium (phylum: Fusobacteria), appear to be more prevalent in North American, Italian, and Japanese patients with IBD.
      • Martinez-Medina M.
      • Aldeguer X.
      • Lopez-Siles M.
      • González-Huix F.
      • López-Oliu C.
      • Dahbi G.
      • Blanco J.E.
      • Blanco J.
      • Garcia-Gil L.J.
      • Darfeuille-Michaud A.
      Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease.
      • Gevers D.
      • Kugathasan S.
      • Denson L.A.
      • Vázquez-Baeza Y.
      • Van Treuren W.
      • Ren B.
      • Schwager E.
      • Knights D.
      • Song S.J.
      • Yassour M.
      • Morgan X.C.
      • Kostic A.D.
      • Luo C.
      • González A.
      • McDonald D.
      • Haberman Y.
      • Walters T.
      • Baker S.
      • Rosh J.
      • Stephens M.
      • Heyman M.
      • Markowitz J.
      • Baldassano R.
      • Griffiths A.
      • Sylvester F.
      • Mack D.
      • Kim S.
      • Crandall W.
      • Hyams J.
      • Huttenhower C.
      • Knight R.
      • Xavier R.J.
      The treatment-naive microbiome in new-onset Crohn's disease.
      • Ohkusa T.
      • Yoshida T.
      • Sato N.
      • Watanabe S.
      • Tajiri H.
      • Okayasu I.
      Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis.

      Influence of Vitamin D/VDR on the Gut Microbiome in IBD

      The gut microbiota and its metabolites play a critical role in the integrity of the mucosal barrier
      • Lavelle A.
      • Sokol H.
      Gut microbiota-derived metabolites as key actors in inflammatory bowel disease.
      ,
      • Zuo T.
      • Ng S.C.
      The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease.
      ; however, the link between disturbed gut flora and the development of IBD remains unclear.
      • Ni J.
      • Wu G.D.
      • Albenberg L.
      • Tomov V.T.
      Gut microbiota and IBD: causation or correlation?.
      Vitamin D influences the distribution of the fecal microbiota, with increased vitamin D levels associated with higher levels of beneficial bacterial species and lower levels of pathogenic bacteria.
      • Triantos C.
      • Aggeletopoulou I.
      • Mantzaris G.J.
      • Mouzaki A.
      Molecular basis of vitamin D action in inflammatory bowel disease.
      ,
      • Charoenngam N.
      • Shirvani A.
      • Kalajian T.A.
      • Song A.
      • Holick M.F.
      The effect of various doses of oral vitamin D(3) supplementation on gut microbiota in healthy adults: a randomized, double-blinded, dose-response study.
      ,
      • Szymczak-Tomczak A.
      • Ratajczak A.E.
      • Kaczmarek-Ryś M.
      • Hryhorowicz S.
      • Rychter A.M.
      • Zawada A.
      • Słomski R.
      • Dobrowolska A.
      • Krela-Kaźmierczak I.
      Pleiotropic effects of vitamin D in patients with inflammatory bowel diseases.
      The VDR gene is not expressed in the bacterial microbiome, so the effect of vitamin D in IBD is likely mediated through VDR signaling in immune cells and IECs.
      • Cantorna M.T.
      • Snyder L.
      • Arora J.
      Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis.

      Animal Studies

      Studies in experimental animal models of IBD have shown how vitamin D affects IBD through its effects on the gut microbiota. Vitamin D–deficient mice exhibited dysbiosis and deficient antimicrobial activity and were susceptible to dextran sulfate sodium (DSS)–induced colitis.
      • Lagishetty V.
      • Misharin A.V.
      • Liu N.Q.
      • Lisse T.S.
      • Chun R.F.
      • Ouyang Y.
      • McLachlan S.M.
      • Adams J.S.
      • Hewison M.
      Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis.
      ,
      • Ooi J.H.
      • Li Y.
      • Rogers C.J.
      • Cantorna M.T.
      Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis.
      In addition, vitamin D may influence the susceptibility of mice to DSS-induced colitis by modulating the gut microbiota and the number of RORγt/FoxP3+ regulatory T cells in the colon.
      • Cantorna M.T.
      • Lin Y.D.
      • Arora J.
      • Bora S.
      • Tian Y.
      • Nichols R.G.
      • Patterson A.D.
      Vitamin D regulates the microbiota to control the numbers of RORγt/FoxP3+ regulatory T cells in the colon.
      These data highlight the potential role of vitamin D in alleviating intestinal inflammation and reducing disease activity in IBD by altering the gut microbiota, resulting in higher numbers of beneficial bacteria and lower numbers of pathogenic bacteria.

      Human Studies

      Studies have shown that oral vitamin D supplementation was associated, at least in part, with a change in gut microbial composition in patients with IBD
      • Garg M.
      • Hendy P.
      • Ding J.N.
      • Shaw S.
      • Hold G.
      • Hart A.
      The effect of vitamin D on intestinal inflammation and faecal microbiota in patients with ulcerative colitis.
      • Schäffler H.
      • Herlemann D.P.
      • Klinitzke P.
      • Berlin P.
      • Kreikemeyer B.
      • Jaster R.
      • Lamprecht G.
      Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn's disease patients, but not in healthy controls.
      • Soltys K.
      • Stuchlikova M.
      • Hlavaty T.
      • Gaalova B.
      • Budis J.
      • Gazdarica J.
      • Krajcovicova A.
      • Zelinkova Z.
      • Szemes T.
      • Kuba D.
      • Drahovska H.
      • Turna J.
      • Stuchlik S.
      Seasonal changes of circulating 25-hydroxyvitamin D correlate with the lower gut microbiome composition in inflammatory bowel disease patients.
      (Table 1). Vitamin D supplementation resulted in a positive outcome, with an increase in Enterobacteriaceae and a decrease in overall gut inflammation in both CD and UC.
      • Garg M.
      • Hendy P.
      • Ding J.N.
      • Shaw S.
      • Hold G.
      • Hart A.
      The effect of vitamin D on intestinal inflammation and faecal microbiota in patients with ulcerative colitis.
      • Schäffler H.
      • Herlemann D.P.
      • Klinitzke P.
      • Berlin P.
      • Kreikemeyer B.
      • Jaster R.
      • Lamprecht G.
      Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn's disease patients, but not in healthy controls.
      • Soltys K.
      • Stuchlikova M.
      • Hlavaty T.
      • Gaalova B.
      • Budis J.
      • Gazdarica J.
      • Krajcovicova A.
      • Zelinkova Z.
      • Szemes T.
      • Kuba D.
      • Drahovska H.
      • Turna J.
      • Stuchlik S.
      Seasonal changes of circulating 25-hydroxyvitamin D correlate with the lower gut microbiome composition in inflammatory bowel disease patients.
      Administration of vitamin D (40,000 IU, once weekly) for a period of 8 weeks did not alter α diversity, except for a small decrease in Ruminococcus gnavus in patients with UC.
      • Garg M.
      • Hendy P.
      • Ding J.N.
      • Shaw S.
      • Hold G.
      • Hart A.
      The effect of vitamin D on intestinal inflammation and faecal microbiota in patients with ulcerative colitis.
      Despite a significant increase in the abundance of Enterobacteriaceae in patients with UC, no changes in total fecal bacterial diversity were observed.
      • Garg M.
      • Hendy P.
      • Ding J.N.
      • Shaw S.
      • Hold G.
      • Hart A.
      The effect of vitamin D on intestinal inflammation and faecal microbiota in patients with ulcerative colitis.
      Vitamin D supplementation (300,000 IU in 4 weeks) caused a change in the composition of the gut microbiota in patients with CD in remission, with an increase in favorable bacteria, such as Roseburia, Alistipes, Parabacteroides, and Faecalibacterium.
      • Schäffler H.
      • Herlemann D.P.
      • Klinitzke P.
      • Berlin P.
      • Kreikemeyer B.
      • Jaster R.
      • Lamprecht G.
      Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn's disease patients, but not in healthy controls.
      The effect of vitamin D supplementation was transient, as the microbial profile recovered within 4 weeks, although vitamin D levels continued to increase.
      • Schäffler H.
      • Herlemann D.P.
      • Klinitzke P.
      • Berlin P.
      • Kreikemeyer B.
      • Jaster R.
      • Lamprecht G.
      Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn's disease patients, but not in healthy controls.
      In addition, vitamin D has a positive effect on the treatment of IBD by modulating the gut microbiome. When vitamin D was administered, an increase in beneficial bacteria and a decrease in pathogenic bacteria were observed in stool samples from healthy individuals.
      • Charoenngam N.
      • Shirvani A.
      • Kalajian T.A.
      • Song A.
      • Holick M.F.
      The effect of various doses of oral vitamin D(3) supplementation on gut microbiota in healthy adults: a randomized, double-blinded, dose-response study.
      In addition, vitamin D supplementation resulted in a dose-dependent increase in bacteria (Bacteroides and Parabacteroides) associated with decreased IBD activity,
      • Charoenngam N.
      • Shirvani A.
      • Kalajian T.A.
      • Song A.
      • Holick M.F.
      The effect of various doses of oral vitamin D(3) supplementation on gut microbiota in healthy adults: a randomized, double-blinded, dose-response study.
      whereas these bacterial populations were reduced in patients with active IBD.
      • Olbjørn C.
      • Cvancarova Småstuen M.
      • Thiis-Evensen E.
      • Nakstad B.
      • Vatn M.H.
      • Jahnsen J.
      • Ricanek P.
      • Vatn S.
      • Moen A.E.F.
      • Tannæs T.M.
      • Lindstrøm J.C.
      • Söderholm J.D.
      • Halfvarson J.
      • Gomollón F.
      • Casén C.
      • Karlsson M.K.
      • Kalla R.
      • Adams A.T.
      • Satsangi J.
      • Perminow G.
      Fecal microbiota profiles in treatment-naïve pediatric inflammatory bowel disease - associations with disease phenotype, treatment, and outcome.
      ,
      • Zhou Y.
      • Zhi F.
      Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis.
      Recently, vitamin D was shown to have a specific effect on bacterial communities in CD. In patients with CD, vitamin D intake modulated gut bacterial composition by increasing the abundance of potentially beneficial bacterial species.
      • Schäffler H.
      • Herlemann D.P.
      • Klinitzke P.
      • Berlin P.
      • Kreikemeyer B.
      • Jaster R.
      • Lamprecht G.
      Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn's disease patients, but not in healthy controls.
      A recent study investigated the possible association between seasonal vitamin D levels and microbial changes.
      • Soltys K.
      • Stuchlikova M.
      • Hlavaty T.
      • Gaalova B.
      • Budis J.
      • Gazdarica J.
      • Krajcovicova A.
      • Zelinkova Z.
      • Szemes T.
      • Kuba D.
      • Drahovska H.
      • Turna J.
      • Stuchlik S.
      Seasonal changes of circulating 25-hydroxyvitamin D correlate with the lower gut microbiome composition in inflammatory bowel disease patients.
      Pediococcus, Clostridium, and Escherichia/Shigella species were enriched in summer/fall, whereas Eggerthella lenta, Helicobacter species, Fusobacterium species, and Faecalibacterium prausnitzii were relatively rare.
      • Soltys K.
      • Stuchlikova M.
      • Hlavaty T.
      • Gaalova B.
      • Budis J.
      • Gazdarica J.
      • Krajcovicova A.
      • Zelinkova Z.
      • Szemes T.
      • Kuba D.
      • Drahovska H.
      • Turna J.
      • Stuchlik S.
      Seasonal changes of circulating 25-hydroxyvitamin D correlate with the lower gut microbiome composition in inflammatory bowel disease patients.
      Table 1Human Studies Evaluating Vitamin D3 Effect on Microbiota Communities in IBD
      StudyPatients, nIBD typeTreatmentStudy durationOutcomes
      Vitamin D levelsMicrobial alterationsDisease courseOther
      IncreaseEnterobacteriaceae↓ Clinical disease activity↓ Fecal calprotectin and PLTs
      Marginal ↓ Ruminococcus gnavus↑ Albumin
      9UC in remissionIncrease↓ Clinical disease activityNo difference in calprotectin, PLTs, and albumin
      8HCIncreaseOverall

      Microbiota diversity unchanged
      NA
      Schäffler et al
      • Schäffler H.
      • Herlemann D.P.
      • Klinitzke P.
      • Berlin P.
      • Kreikemeyer B.
      • Jaster R.
      • Lamprecht G.
      Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn's disease patients, but not in healthy controls.
      7CD in clinical remissionVitamin D3

      day 1–3: 20,000 IU;

      day 4–28 (every other day): 20,000 IU
      4 WeeksIncreaseWeek 0–1

      ↑ Alistipes

      ↑ Barnesiella

      ↑ Roseburia

      ↑ Porphyromonadaceae

      ↑ Anaerotruncus

      ↑ Subdoligranulum

      ↑ Ruminococaceae
      No difference in CDAINo difference in calprotectin
      Week 2

      ↓ Bacteroidetes

      ↑Faecalibacterium,

      ↑Veillonella

      ↑ Blautia

      ↑ Fusicatenibacter

      ↑ Intestinibacter
      Week 3

      Parabacteroides
      Week 4

      Lactobacillus

      ↑ Megasphera
      ↓ Bacterial diversity
      10HCIncreaseNo differenceNANA
      Soltys et al
      • Soltys K.
      • Stuchlikova M.
      • Hlavaty T.
      • Gaalova B.
      • Budis J.
      • Gazdarica J.
      • Krajcovicova A.
      • Zelinkova Z.
      • Szemes T.
      • Kuba D.
      • Drahovska H.
      • Turna J.
      • Stuchlik S.
      Seasonal changes of circulating 25-hydroxyvitamin D correlate with the lower gut microbiome composition in inflammatory bowel disease patients.
      39CDSupplemented and nonsupplementedWinter/springDecreaseIn mucosa:

      Clostridium species

      Clostridia (Firmicutes)
      Overall

      ↑ Firmicutes

      ↑ Bacteroidetes

      ↑ Proteobacteria

      ↑Actinobacteria
      NRNR
      In stool:

      Bacteroidetes
      Summer/fallIncreaseIn stool:

      Firmicutes,

      Bacteroides species
      In sigma inflamed and noninflamed:

      ↓ Actinobacteria
      In noninflamed sigma:

      ↓ Fusobacteria,

      Pediococcus species
      In inflamed sigmoid tissue:

      Clostridium species
      In noninflamed terminal ileum:

      ↓ Collinsella aerofaciens
      35UCSupplemented and nonsupplementedWinter/springDecreaseIn inflamed sigma:

      Proteobacteria

      ↑ Campylobacteralles,

      ↑ Helicobacteraceae
      Overall

      ↑ Proteobacteria

      ↑ Firmicutes

      ↑ Bacteroidetes

      ↑ Actinobacteria
      NRNR
      In noninflamed sigma:

      ↑ Actinobacteria
      Summer/fallIncreaseIn stool:

      ↑ γ-proteobacteria
      ↑, Increase; ↓, decrease; CD, Crohn disease; CDAI, Crohn Disease Activity Index; HC, healthy control; IBD, inflammatory bowel disease; NA, not applicable; NR, not reported; PLT, platelet; UC, ulcerative colitis.

      Regulation of Vitamin D/VDR in IBD by Probiotics

      Probiotics, which produce vitamins, have attracted increasing interest because of their effectiveness in reducing the adverse effects of medications. Lactic acid bacteria are most commonly used because they block the inflammatory process through multiple mechanisms, including protecting the intestinal barrier and mucosal function, regulating immune response, and modulating gut flora in patients with IBD.
      • Zhai Z.
      • Dong W.
      • Sun Y.
      • Gu Y.
      • Ma J.
      • Wang B.
      • Cao H.
      Vitamin-microbiota crosstalk in intestinal inflammation and carcinogenesis.
      Probiotics, including Lactobacillus rhamnosus GG and Lactobacillus plantarum, have beneficial effects on vitamin D and VDR activity. In parallel, the role of probiotics in modulating VDR signaling in vivo was investigated using a Salmonella colitis model in VDR knockout (KO). The results showed that probiotics provided physiological and histologic protection in VDR-positive mice, whereas they had no effect in VDR KO mice.
      • Liu M.
      • Chen Q.
      • Sun Y.
      • Zeng L.
      • Wu H.
      • Gu Q.
      • Li P.
      Probiotic potential of a folate-producing strain Latilactobacillus sakei LZ217 and its modulation effects on human gut microbiota.
      In addition, it was shown that bile salt hydrolase–active Lactobacillus reuteri NCIMB 30,242 can regulate plasma vitamin D concentrations. The combination of L. reuteri, vitamin D, and krill oil significantly decreased the pathologic score and secretion of inflammatory markers and induced mucosal healing.
      • Costanzo M.
      • Cesi V.
      • Palone F.
      • Pierdomenico M.
      • Colantoni E.
      • Leter B.
      • Vitali R.
      • Negroni A.
      • Cucchiara S.
      • Stronati L.
      Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation.
      Pretreatment with VSL#3 significantly increased VDR levels, protected intestinal mucosa, and prevented intestinal injury.
      • Shang M.
      • Sun J.
      Vitamin D/VDR, probiotics, and gastrointestinal diseases.
      Gut microbes synthesize lithocholic acid, which acts as a bridge between VDR and microbiota and increases vitamin D levels.
      • Ishizawa M.
      • Akagi D.
      • Makishima M.
      Lithocholic acid is a vitamin D receptor ligand that acts preferentially in the ileum.
      Treatment of HCT116 cells or intestinal organoids with probiotic lactic acid bacteria resulted in the release of P40 and P75 proteins, which contribute to the anti-inflammatory function by increasing VDR and promoting autophagy.
      • Lu R.
      • Shang M.
      • Zhang Y.G.
      • Jiao Y.
      • Xia Y.
      • Garrett S.
      • Bakke D.
      • Bäuerl C.
      • Martinez G.P.
      • Kim C.H.
      • Kang S.M.
      • Sun J.
      Lactic acid bacteria isolated from Korean kimchi activate the vitamin D receptor-autophagy signaling pathways.

      Cosupplementation of Vitamin D and Probiotics in IBD

      There is increasing evidence of the synergistic effect of combined supplementation with vitamin D and probiotic bacteria in regulating the gut microbiota and metabolome.
      • Abboud M.
      • Rizk R.
      • AlAnouti F.
      • Papandreou D.
      • Haidar S.
      • Mahboub N.
      The health effects of vitamin D and probiotic co-supplementation: a systematic review of randomized controlled trials.
      Vitamin D absorption in the gut and VDR expression at both the protein and transcriptional levels are increased by the use of probiotics.
      • Shang M.
      • Sun J.
      Vitamin D/VDR, probiotics, and gastrointestinal diseases.
      At the same time, VDR plays an important role in modulating the mechanisms underlying the action of probiotics and regulating their immunomodulatory and anti-inflammatory effects.
      • Bakke D.
      • Chatterjee I.
      • Agrawal A.
      • Dai Y.
      • Sun J.
      Regulation of microbiota by vitamin D receptor: a nuclear weapon in metabolic diseases.
      In a recent systematic review, combined supplementation with vitamin D and probiotics was recommended to be superior to vitamin D or probiotics alone or placebo.
      • Abboud M.
      • Rizk R.
      • AlAnouti F.
      • Papandreou D.
      • Haidar S.
      • Mahboub N.
      The health effects of vitamin D and probiotic co-supplementation: a systematic review of randomized controlled trials.
      A hypothetical model for the interaction of probiotics and vitamin D in terms of their beneficial role in patients with IBD has been proposed.
      • Pagnini C.
      • Di Paolo M.C.
      • Graziani M.G.
      • Delle Fave G.
      Probiotics and vitamin D/vitamin D receptor pathway interaction: potential therapeutic implications in inflammatory bowel disease.
      In this model, specific probiotic bacteria can increase circulating vitamin D levels and induce VDR expression and activity in the mucosa, resulting in modulation of mucosal immunity, enhancement of innate immunity and antibacterial defenses, reduction of type 1 helper T-cell (Th1) cytokine expression, and increase of anti-inflammatory effects in the mucosa.
      • Pagnini C.
      • Di Paolo M.C.
      • Graziani M.G.
      • Delle Fave G.
      Probiotics and vitamin D/vitamin D receptor pathway interaction: potential therapeutic implications in inflammatory bowel disease.
      Activation of innate immunity promotes modulation of the gut microbiota and elimination or prevention of dysbiosis.
      • Pagnini C.
      • Di Paolo M.C.
      • Graziani M.G.
      • Delle Fave G.
      Probiotics and vitamin D/vitamin D receptor pathway interaction: potential therapeutic implications in inflammatory bowel disease.
      This process leads to transient colonization with supplemental probiotics and proliferation of butyrate-producing bacteria that activate vitamin D–VDR pathway in a loop-like manner.
      • Pagnini C.
      • Di Paolo M.C.
      • Graziani M.G.
      • Delle Fave G.
      Probiotics and vitamin D/vitamin D receptor pathway interaction: potential therapeutic implications in inflammatory bowel disease.

      Vitamin D/VDR Signaling Pathway Improves Intestinal Mucosal Barrier Integrity in IBD

      Epithelial Junction Complexes

      Paracellular permeability occurs via intercellular junctional complexes, such as adherens junctions, tight junctions (TJs), and desmosomes. Vitamin D contributes significantly to maintaining the integrity of the intestinal epithelium and modulates intestinal epithelial cell function by maintaining the expression of TJs in epithelial cells and preventing cytokine-triggered epithelial cell apoptosis.
      • Suzuki T.
      Regulation of the intestinal barrier by nutrients: the role of tight junctions.
      Recent evidence has shown that vitamin D deficiency can attenuate the defective function of the intestinal epithelial barrier and increase susceptibility to DSS-induced colitis in experimental models.
      • Kong J.
      • Zhang Z.
      • Musch M.W.
      • Ning G.
      • Sun J.
      • Hart J.
      • Bissonnette M.
      • Li Y.C.
      Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier.
      Deficiency of vitamin D or VDR led to dysbiosis, which resulted in increased susceptibility to gut injury.
      • He L.
      • Liu T.
      • Shi Y.
      • Tian F.
      • Hu H.
      • Deb D.K.
      • Chen Y.
      • Bissonnette M.
      • Li Y.C.
      Gut epithelial vitamin D receptor regulates microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis.
      Deletion of VDR in the intestinal epithelium caused increased apoptosis of IECs and impaired permeability of the mucosal barrier.
      • He L.
      • Liu T.
      • Shi Y.
      • Tian F.
      • Hu H.
      • Deb D.K.
      • Chen Y.
      • Bissonnette M.
      • Li Y.C.
      Gut epithelial vitamin D receptor regulates microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis.
      Mechanisms involved in the development of dysbiosis in VDR KO and CYP27B1 KO mice include lower E-cadherin expression on the gut epithelium and immune cells, and lower numbers of tolerogenic dendritic cells, resulting in higher intestinal inflammation.
      • Ooi J.H.
      • Li Y.
      • Rogers C.J.
      • Cantorna M.T.
      Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis.
      Clinical studies have shown that vitamin D deficiency resulted in decreased expression of VDR, occludin, E-cadherin, and zonula occluden-1 in patients with UC
      • Meckel K.
      • Li Y.C.
      • Lim J.
      • Kocherginsky M.
      • Weber C.
      • Almoghrabi A.
      • Chen X.
      • Kaboff A.
      • Sadiq F.
      • Hanauer S.B.
      • Cohen R.D.
      • Kwon J.
      • Rubin D.T.
      • Hanan I.
      • Sakuraba A.
      • Yen E.
      • Bissonnette M.
      • Pekow J.
      Serum 25-hydroxyvitamin D concentration is inversely associated with mucosal inflammation in patients with ulcerative colitis.
      and decreased expression of claudin-1, occludin, zonula occluden-1, and junctional adhesion molecule in patients with CD (Figure 2).
      • Yang Y.
      • Cui X.
      • Li J.
      • Wang H.
      • Li Y.
      • Chen Y.
      • Zhang H.
      Clinical evaluation of vitamin D status and its relationship with disease activity and changes of intestinal immune function in patients with Crohn's disease in the Chinese population.
      Figure thumbnail gr2
      Figure 2Schematic representation of the effect of vitamin D and the microbiota on the intestinal epithelial barrier. Vitamin D–vitamin D receptor (VDR) signaling is essential for maintaining intestinal barrier integrity by modulating apical junctional complexes through up-regulation of tight junctional proteins, zonula occluden-1 (ZO-1) and occludin, and adherent junctional proteins, such as E-cadherin, and down-regulation of myeloid differentiation primary response (MyD88) expression. Gut barrier permeability is also maintained by vitamin D–VDR signaling through the control of claudins. Vitamin D–VDR signaling protects against tumor necrosis factor (TNF)-α–induced intestinal barrier injury by contraction of the actin cytoskeleton via blockade of NF-κB–mediated activation of long myosin light chain kinase (L-MLCK). The vitamin D–VDR pathway is intimately involved in the autophagy process through its action on autophagy-related 16-like 1 (ATG16L1), nucleotide-binding oligomerization domain protein 2 (NOD2), and Beclin-1 and protects against apoptosis of intestinal epithelial cells (IECs) via down-regulation of the PUMA (P53 up-regulated modulator of apoptosis) gene, which occurs through suppression of NF-κB stimulation. The microbiome induces VDR expression in IECs, whereas it is regulated by vitamin D supplementation and by secretion of antimicrobial peptides (α-defensins from Paneth cells and β-defensin 2 and cathelicidin by IECs). Vitamin D deficiency induces secretion of IL-1α, IL-1β, IL-21, IL-10, TNF-α, and interferon (IFN)-γ. TNF-α promotes disruption of gastrointestinal barrier integrity and colon inflammation. Vitamin D increases the expression of alkaline phosphatase and maltase, which, in turn, promotes microvilli formation. AJ, adherent junction; ALP, alkaline phosphatase; AMP, antimicrobial peptide; CAMP, cathelicidin antimicrobial peptide; DEFB2/HBD2, antimicrobial peptide defensin β2; FGF-23, fibroblast growth factor 23; hPepT1, human PEPT1; IRGM, immunity-related GTPase M; MDP, muramyl dipeptide; MMP-7, matrix metalloproteinase 7; RXR, retinoid X receptor; TJ, tight junction; VDRE, vitamin D response element.
      Mucosal barrier homeostasis is protected by vitamin D by maintaining the integrity of TJs by inducing the expression of TJ-related mRNA and proteins in mice.
      • Zhao H.
      • Zhang H.
      • Wu H.
      • Li H.
      • Liu L.
      • Guo J.
      • Li C.
      • Shih D.Q.
      • Zhang X.
      Protective role of 1,25(OH)2 vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice.
      These findings were confirmed by in vitro studies showing that vitamin D rescued epithelial barrier function in rat IECs by improving permeability and restoring TJs (zonula occluden-1 and claudin-2), resulting in a reduction in inflammation.
      • Lee C.
      • Lau E.
      • Chusilp S.
      • Filler R.
      • Li B.
      • Zhu H.
      • Yamoto M.
      • Pierro A.
      Protective effects of vitamin D against injury in intestinal epithelium.
      In mouse models of colitis, vitamin D administration reduced TJ barrier impairment.
      • Dong S.
      • Singh T.P.
      • Wei X.
      • Yao H.
      • Wang H.
      Protective effect of 1,25-dihydroxy vitamin D3 on pepsin-trypsin-resistant gliadin-induced tight junction injuries.
      • Liu T.
      • Shi Y.
      • Du J.
      • Ge X.
      • Teng X.
      • Liu L.
      • Wang E.
      • Zhao Q.
      Vitamin D treatment attenuates 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis but not oxazolone-induced colitis.
      • Stio M.
      • Retico L.
      • Annese V.
      • Bonanomi A.G.
      Vitamin D regulates the tight-junction protein expression in active ulcerative colitis.
      In an in vitro model of the intestinal epithelial barrier, 1,25(OH)2D3 increased the expression of E-cadherin and TJ components, such as occludin and claudins (Figure 2).
      • Chen S.W.
      • Wang P.Y.
      • Zhu J.
      • Chen G.W.
      • Zhang J.L.
      • Chen Z.Y.
      • Zuo S.
      • Liu Y.C.
      • Pan Y.S.
      Protective effect of 1,25-dihydroxyvitamin d3 on lipopolysaccharide-induced intestinal epithelial tight junction injury in caco-2 cell monolayers.
      In inflamed tissues of patients with UC, treatment with vitamin D up-regulated claudin-1 and claudin-2 and down-regulated claudin-4 and claudin-7.
      • Stio M.
      • Retico L.
      • Annese V.
      • Bonanomi A.G.
      Vitamin D regulates the tight-junction protein expression in active ulcerative colitis.
      Overexpression of VDR protected mice from bacterial- and chemical-induced colitis by promoting claudin-15 expression, whereas claudin-15 expression was suppressed in VDR KO mice.
      • Chatterjee I.
      • Zhang Y.
      • Zhang J.
      • Lu R.
      • Xia Y.
      • Sun J.
      Overexpression of vitamin D receptor in intestinal epithelia protects against colitis via upregulating tight junction protein claudin 15.
      Claudin-2 promoter activity was enhanced by VDR in a caudal-related homeobox 1 binding site.
      • Zhang Y.G.
      • Wu S.
      • Lu R.
      • Zhou D.
      • Zhou J.
      • Carmeliet G.
      • Petrof E.
      • Claud E.C.
      • Sun J.
      Tight junction CLDN2 gene is a direct target of the vitamin D receptor.
      VDR deletion resulted in decreased claudin-2 expression by abolishing VDR/promoter binding, whereas VDR deletion in IECs resulted in significantly lower claudin-2 levels in VDR KO and VDR-conditional KO mice in vivo.
      • Zhang Y.G.
      • Wu S.
      • Lu R.
      • Zhou D.
      • Zhou J.
      • Carmeliet G.
      • Petrof E.
      • Claud E.C.
      • Sun J.
      Tight junction CLDN2 gene is a direct target of the vitamin D receptor.
      These results were consistent with the findings of another study showing decreased claudin-2 mRNA and protein expression in VDR KO mice.
      • Kühne H.
      • Hause G.
      • Grundmann S.M.
      • Schutkowski A.
      • Brandsch C.
      • Stangl G.I.
      Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression.
      In parallel, the vitamin D–VDR pathway may be involved in the control of gut barrier integrity through modulation of myosin light chain kinase (Figure 2).
      • Cunningham K.E.
      • Turner J.R.
      Myosin light chain kinase: pulling the strings of epithelial tight junction function.
      Myosin light chain kinase promotes actomyosin ring contraction through phosphorylation of related proteins and has been proposed as a regulator of TJ permeability.
      • Cunningham K.E.
      • Turner J.R.
      Myosin light chain kinase: pulling the strings of epithelial tight junction function.
      Long myosin light chain kinase isoform expression is up-regulated in the intestine during inflammation, and vitamin D/VDR signaling controls epithelial permeability in cultured intestinal cells and in experimental models by regulating the myosin light chain kinase pathway.
      • Du J.
      • Chen Y.
      • Shi Y.
      • Liu T.
      • Cao Y.
      • Tang Y.
      • Ge X.
      • Nie H.
      • Zheng C.
      • Li Y.C.
      1,25-Dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway.
      These data highlight that vitamin D/VDR signaling maintains the integrity of the intestinal mucosal barrier by regulating IECs that have a major impact on Paneth cells, autophagy, and the gut microbiome.

      Paneth Cell Dysfunction

      Mice with intestinal epithelium VDR KO showed impaired Paneth cell function, impaired autophagy, and dysbiosis accompanied by decreased expression of autophagy-related 16-like 1, a protein closely associated with IBD risk and an important regulator of autophagy (Figure 2).
      • Sun J.
      VDR/vitamin D receptor regulates autophagic activity through ATG16L1.
      VDR-deficient mice showed impaired ileal Paneth cell secretion of α-defensins and the matrix metalloprotease 7 in the ileum, which may lead to dysbiosis (Figure 2).
      • Su D.
      • Nie Y.
      • Zhu A.
      • Chen Z.
      • Wu P.
      • Zhang L.
      • Luo M.
      • Sun Q.
      • Cai L.
      • Lai Y.
      • Xiao Z.
      • Duan Z.
      • Zheng S.
      • Wu G.
      • Hu R.
      • Tsukamoto H.
      • Lugea A.
      • Liu Z.
      • Pandol S.J.
      • Han Y.P.
      Vitamin D signaling through induction of Paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models.
      A recent study showed that Paneth cells derived from VDR KO mice exhibited decreased inhibition of pathogenic bacterial growth and autophagic responses (Figure 2).
      • Lu R.
      • Zhang Y.G.
      • Xia Y.
      • Zhang J.
      • Kaser A.
      • Blumberg R.
      • Sun J.
      Paneth cell alertness to pathogens maintained by vitamin D receptors.
      These mice had significantly higher rates of inflammation and were highly susceptible to small intestinal injury after Salmonella infection, suggesting that loss of VDR in Paneth cells leads to deficient antibacterial activity and increased rates of inflammation.
      • Lu R.
      • Zhang Y.G.
      • Xia Y.
      • Zhang J.
      • Kaser A.
      • Blumberg R.
      • Sun J.
      Paneth cell alertness to pathogens maintained by vitamin D receptors.
      VDR deficiency in the intestinal epithelium caused increased apoptosis of epithelial cells and abnormal autophagy due to decreased autophagy-related 16-like 1 and Beclin-1 expression (Figure 2).
      • Wu S.
      • Zhang Y.G.
      • Lu R.
      • Xia Y.
      • Zhou D.
      • Petrof E.O.
      • Claud E.C.
      • Chen D.
      • Chang E.B.
      • Carmeliet G.
      • Sun J.
      Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis.
      ,
      • Lu R.
      • Zhang Y.G.
      • Xia Y.
      • Sun J.
      Imbalance of autophagy and apoptosis in intestinal epithelium lacking the vitamin D receptor.
      Production of lysozyme and other antimicrobial peptides (AMPs), such as defensins, was lower in VDR KO mice.
      • Lu R.
      • Zhang Y.G.
      • Xia Y.
      • Zhang J.
      • Kaser A.
      • Blumberg R.
      • Sun J.
      Paneth cell alertness to pathogens maintained by vitamin D receptors.
      ,
      • Wu S.
      • Zhang Y.G.
      • Lu R.
      • Xia Y.
      • Zhou D.
      • Petrof E.O.
      • Claud E.C.
      • Chen D.
      • Chang E.B.
      • Carmeliet G.
      • Sun J.
      Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis.
      One possible mechanism linking vitamin D deficiency to IBD pathogenesis is the dysregulation of autophagy by miR-142-3p (Figure 2); increased ileal expression of the autophagy-suppressing miR-142-3p was detected in vitamin D–deficient mice and in colon biopsies from vitamin D–deficient pediatric patients with IBD.
      • McGillis L.
      • Bronte-Tinkew D.M.
      • Dang F.
      • Capurro M.
      • Prashar A.
      • Ricciuto A.
      • Greenfield L.
      • Lozano-Ruf A.
      • Siddiqui I.
      • Hsieh A.
      • Church P.
      • Walters T.
      • Roth D.E.
      • Griffiths A.
      • Philpott D.
      • Jones N.L.
      Vitamin D deficiency enhances expression of autophagy-regulating miR-142-3p in mouse and "involved" IBD patient intestinal tissues.
      In parallel, Paneth cells from vitamin D–deficient mice exhibited impaired morphology and increased levels of the autophagy adaptor protein p62, a protein that was absent throughout the crypt epithelium,
      • McGillis L.
      • Bronte-Tinkew D.M.
      • Dang F.
      • Capurro M.
      • Prashar A.
      • Ricciuto A.
      • Greenfield L.
      • Lozano-Ruf A.
      • Siddiqui I.
      • Hsieh A.
      • Church P.
      • Walters T.
      • Roth D.E.
      • Griffiths A.
      • Philpott D.
      • Jones N.L.
      Vitamin D deficiency enhances expression of autophagy-regulating miR-142-3p in mouse and "involved" IBD patient intestinal tissues.
      suggesting that Paneth cells exhibit early autophagy dysregulation markers in response to vitamin D deficiency and increased miR-142-3p expression.
      • McGillis L.
      • Bronte-Tinkew D.M.
      • Dang F.
      • Capurro M.
      • Prashar A.
      • Ricciuto A.
      • Greenfield L.
      • Lozano-Ruf A.
      • Siddiqui I.
      • Hsieh A.
      • Church P.
      • Walters T.
      • Roth D.E.
      • Griffiths A.
      • Philpott D.
      • Jones N.L.
      Vitamin D deficiency enhances expression of autophagy-regulating miR-142-3p in mouse and "involved" IBD patient intestinal tissues.
      Although the effect of vitamin D level on mucus production has not been demonstrated, studies in experimental models suggest the absence of VDR on goblet cells.
      • Riner K.
      • Boos A.
      • Hässig M.
      • Liesegang A.
      Vitamin D receptor distribution in intestines of domesticated sheep Ovis ammon f. aries.
      However, degradation of the mucus layer was observed in CYP27B1 KO mice.
      • Zhu W.
      • Yan J.
      • Zhi C.
      • Zhou Q.
      • Yuan X.
      1,25(OH)(2)D(3) deficiency-induced gut microbial dysbiosis degrades the colonic mucus barrier in Cyp27b1 knockout mouse model.
      This finding suggests that vitamin D indirectly regulates mucus secretion by possibly promoting Ca2+ assimilation.
      • Paz H.B.
      • Tisdale A.S.
      • Danjo Y.
      • Spurr-Michaud S.J.
      • Argüeso P.
      • Gipson I.K.
      The role of calcium in mucin packaging within goblet cells.
      The positive role of Ca2+ and vitamin D on MUC12 expression has also been suggested.
      • Mandle H.B.
      • Jahan F.A.
      • Bostick R.M.
      • Baron J.A.
      • Barry E.L.
      • Yacoub R.
      • Merrill J.
      • Rutherford R.E.
      • Seabrook M.E.
      • Fedirko V.
      Effects of supplemental calcium and vitamin D on tight-junction proteins and mucin-12 expression in the normal rectal mucosa of colorectal adenoma patients.

      Vitamin D/VDR Effects on the Intestinal Microbiome and Their Role on the Immunologic Barrier in IBD

      Intestinal homeostasis is maintained by the interaction between the gut microbiome, IECs, and immune cells. A defect in any component of this complex interaction can lead to the development of an inflammatory response, as seen in IBD.
      • Dimitrov V.
      • White J.H.
      Vitamin D signaling in intestinal innate immunity and homeostasis.
      Vitamin D contributes significantly to the regulation of immune responses through its binding to VDR, which is expressed in most immune cells, including activated or naive CD4+ and CD8+ T cells, B cells, neutrophils, APCs, monocytes, macrophages, and dendritic cells (Figure 1C).
      • Di Rosa M.
      • Malaguarnera G.
      • De Gregorio C.
      • Palumbo M.
      • Nunnari G.
      • Malaguarnera L.
      Immuno-modulatory effects of vitamin D3 in human monocyte and macrophages.
      A contribution of B cells/plasma cells in experimental or human IBD seems possible but has not been clearly demonstrated.
      • Pararasa C.
      • Zhang N.
      • Tull T.J.
      • Chong M.H.A.
      • Siu J.H.Y.
      • Guesdon W.
      • Chavele K.M.
      • Sanderson J.D.
      • Langmead L.
      • Kok K.
      • Spencer J.
      • Vossenkamper A.
      Reduced CD27(-)IgD(-) B cells in blood and raised CD27(-)IgD(-) B cells in gut-associated lymphoid tissue in inflammatory bowel disease.
      CD4+ T cells differentiate into distinct proinflammatory and anti-inflammatory subpopulations.
      • Zhu J.
      • Yamane H.
      • Paul W.E.
      Differentiation of effector CD4 T cell populations (∗).
      The various T-cell subpopulations and the cytokines they secrete are critical to the physiological function of the intestinal mucosa and continuously modulate intestinal homeostasis and inflammation.
      • Mao K.
      • Baptista A.P.
      • Tamoutounour S.
      • Zhuang L.
      • Bouladoux N.
      • Martins A.J.
      • Huang Y.
      • Gerner M.Y.
      • Belkaid Y.
      • Germain R.N.
      Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism.
      A growing body of evidence points to the role of T cells, particularly Th1/type 17 helper T cells, in experimental and human IBD; some of it is conflicting.
      • Imam T.
      • Park S.
      • Kaplan M.H.
      • Olson M.R.
      Effector T helper cell subsets in inflammatory bowel diseases.
      A useful tool to study the immunologic background of IBD is the experimental IBD model, which involves adoptive transfer of T cells to immunocompromised mice.
      • Imam T.
      • Park S.
      • Kaplan M.H.
      • Olson M.R.
      Effector T helper cell subsets in inflammatory bowel diseases.
      In this model, adoptive transfer of naive CD4+ T cells to syngeneic severe combined immunodeficiency or RAG KO mice leads to the development of chronic progressive colitis that simulates IBD.
      The vitamin D–VDR–retinoid X receptor complex induces chemotactic and phagocytic capabilities and concurrently stimulates the transcription of AMPs in various cells, including colon cells (Figure 2).
      • Lagishetty V.
      • Chun R.F.
      • Liu N.Q.
      • Lisse T.S.
      • Adams J.S.
      • Hewison M.
      1alpha-Hydroxylase and innate immune responses to 25-hydroxyvitamin D in colonic cell lines.
      AMPs, including cathelicidin (hCAP18) and β-defensin 2 (DEFB4/HBD2), act as chemotactic factors for inflammatory immune cells
      • Wampach L.
      • Heintz-Buschart A.
      • Hogan A.
      • Muller E.E.L.
      • Narayanasamy S.
      • Laczny C.C.
      • Hugerth L.W.
      • Bindl L.
      • Bottu J.
      • Andersson A.F.
      • de Beaufort C.
      • Wilmes P.
      Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life.
      and exert antimicrobial effects.
      • Di Rosa M.
      • Malaguarnera G.
      • De Gregorio C.
      • Palumbo M.
      • Nunnari G.
      • Malaguarnera L.
      Immuno-modulatory effects of vitamin D3 in human monocyte and macrophages.
      In human macrophages, stimulation of the toll-like receptor promotes expression of the cathelicidin antimicrobial peptide via a vitamin D–dependent pathway.
      • Liu P.T.
      • Stenger S.
      • Li H.
      • Wenzel L.
      • Tan B.H.
      • Krutzik S.R.
      • Ochoa M.T.
      • Schauber J.
      • Wu K.
      • Meinken C.
      • Kamen D.L.
      • Wagner M.
      • Bals R.
      • Steinmeyer A.
      • Zügel U.
      • Gallo R.L.
      • Eisenberg D.
      • Hewison M.
      • Hollis B.W.
      • Adams J.S.
      • Bloom B.R.
      • Modlin R.L.
      Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response.
      Vitamin D–mediated up-regulation of cathelicidin antimicrobial peptide enhances antimicrobial activity against pathogens by down-regulating cathelicidin leucine–leucine-37 and up-regulating phagosome formation.
      • Svensson D.
      • Nebel D.
      • Nilsson B.O.
      Vitamin D3 modulates the innate immune response through regulation of the hCAP-18/LL-37 gene expression and cytokine production.
      DEFB4/HBD2 and cathelicidin antimicrobial peptide were found to be induced both directly and indirectly by 1,25(OH)2D3 stimulation in human monocytic and intestinal cell lines through activation of the intracellular pattern recognition receptor nucleotide-binding oligomerization domain protein 2.
      • Wang T.T.
      • Nestel F.P.
      • Bourdeau V.
      • Nagai Y.
      • Wang Q.
      • Liao J.
      • Tavera-Mendoza L.
      • Lin R.
      • Hanrahan J.W.
      • Mader S.
      • White J.H.
      Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression.
      • Wang T.T.
      • Dabbas B.
      • Laperriere D.
      • Bitton A.J.
      • Soualhine H.
      • Tavera-Mendoza L.E.
      • Dionne S.
      • Servant M.J.
      • Bitton A.
      • Seidman E.G.
      • Mader S.
      • Behr M.A.
      • White J.H.
      Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease.
      • Dimitrov V.
      • White J.H.
      Species-specific regulation of innate immunity by vitamin D signaling.
      Activation of nucleotide-binding oligomerization domain protein 2 by its ligand muramyl dipeptide triggers HBD2 gene expression (Figure 2).
      • Voss E.
      • Wehkamp J.
      • Wehkamp K.
      • Stange E.F.
      • Schröder J.M.
      • Harder J.
      NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2.
      Vitamin D induces nucleotide-binding oligomerization domain protein 2 in primary human monocytic and epithelial cells.
      • Wang T.T.
      • Dabbas B.
      • Laperriere D.
      • Bitton A.J.
      • Soualhine H.
      • Tavera-Mendoza L.E.
      • Dionne S.
      • Servant M.J.
      • Bitton A.
      • Seidman E.G.
      • Mader S.
      • Behr M.A.
      • White J.H.
      Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease.
      These results suggest that the action of AMPs has a major impact on the composition of the gut microbiota. AMPs and IgAs synergistically protect the mucus layer outside epithelial cells.
      • Jäger S.
      • Stange E.F.
      • Wehkamp J.
      Inflammatory bowel disease: an impaired barrier disease.
      In addition, data have shown that activation of 1,25(OH)2D3 in the intestinal epithelial cell line DLD1 promotes cathelicidin expression, inhibits E. coli growth in vitro, and protects against experimental colitis in vivo.
      • Gubatan J.
      • Mehigan G.A.
      • Villegas F.
      • Mitsuhashi S.
      • Longhi M.S.
      • Malvar G.
      • Csizmadia E.
      • Robson S.
      • Moss A.C.
      Cathelicidin mediates a protective role of vitamin d in ulcerative colitis and human colonic epithelial cells.
      This effect was attenuated by blockade of cathelicidin, suggesting an antimicrobial role of vitamin D mediated by cathelicidin.
      • Gubatan J.
      • Mehigan G.A.
      • Villegas F.
      • Mitsuhashi S.
      • Longhi M.S.
      • Malvar G.
      • Csizmadia E.
      • Robson S.
      • Moss A.C.
      Cathelicidin mediates a protective role of vitamin d in ulcerative colitis and human colonic epithelial cells.
      In IECs, the expression of AMP is also regulated by the bioproducts of gut metabolism, which form a mucosal barrier and prevent the interaction of microbes and pathogens with the gut epithelium.
      • Wells J.M.
      • Brummer R.J.
      • Derrien M.
      • MacDonald T.T.
      • Troost F.
      • Cani P.D.
      • Theodorou V.
      • Dekker J.
      • Méheust A.
      • de Vos W.M.
      • Mercenier A.
      • Nauta A.
      • Garcia-Rodenas C.L.
      Homeostasis of the gut barrier and potential biomarkers.
      Short-chain fatty acids, such as sodium butyrate, are able to activate cathelicidin expression.
      • Campbell Y.
      • Fantacone M.L.
      • Gombart A.F.
      Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism.
      The vitamin D–VDR pathway is involved in this activation, as the regulation of cathelicidin expression in the colon by secondary bile acids is VDR regulated.
      • Wells J.M.
      • Brummer R.J.
      • Derrien M.
      • MacDonald T.T.
      • Troost F.
      • Cani P.D.
      • Theodorou V.
      • Dekker J.
      • Méheust A.
      • de Vos W.M.
      • Mercenier A.
      • Nauta A.
      • Garcia-Rodenas C.L.
      Homeostasis of the gut barrier and potential biomarkers.
      In addition, VDR signaling in mice is also controlled by bacterially produced metabolites, similar to butyrate, which are associated with higher epithelial VDR levels.
      • Wu S.
      • Zhang Y.G.
      • Lu R.
      • Xia Y.
      • Zhou D.
      • Petrof E.O.
      • Claud E.C.
      • Chen D.
      • Chang E.B.
      • Carmeliet G.
      • Sun J.
      Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis.
      Surprisingly, some bacterial enzymes hydroxylate steroids and stimulate vitamin D.
      • Szaleniec M.
      • Wojtkiewicz A.M.
      • Bernhardt R.
      • Borowski T.
      • Donova M.
      Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms.
      The intestinal microbiota also influences vitamin D metabolism by regulating FGF23 and CYP27B1 (Figure 2).
      • Bora S.A.
      • Kennett M.J.
      • Smith P.B.
      • Patterson A.D.
      • Cantorna M.T.
      The gut microbiota regulates endocrine vitamin D metabolism through fibroblast growth factor 23.
      Studies in experimental models have shown that the absence of VDR in the gut results in dysbiosis,
      • Wu S.
      • Zhang Y.G.
      • Lu R.
      • Xia Y.
      • Zhou D.
      • Petrof E.O.
      • Claud E.C.
      • Chen D.
      • Chang E.B.
      • Carmeliet G.
      • Sun J.
      Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis.
      decreased secretion of proinflammatory cytokines from the epithelium, and attenuation of immune cell infiltration into the mucosa.
      • Golan M.A.
      • Liu W.
      • Shi Y.
      • Chen L.
      • Wang J.
      • Liu T.
      • Li Y.C.
      Transgenic expression of vitamin D receptor in gut epithelial cells ameliorates spontaneous colitis caused by interleukin-10 deficiency.
      Deletion of VDR in the epithelium of a chemically induced colitis mouse model resulted in excessive apoptosis in colon epithelia due to overactivation of the gene PUMA (p53 up-regulated modulator of apoptosis), leading to epithelial barrier dysfunction (Figure 2). The disruption of the mucosal barrier led to increased invasion of antigens and luminal bacteria and triggered mucosal inflammatory responses.
      • He L.
      • Liu T.
      • Shi Y.
      • Tian F.
      • Hu H.
      • Deb D.K.
      • Chen Y.
      • Bissonnette M.
      • Li Y.C.
      Gut epithelial vitamin D receptor regulates microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis.
      Vitamin D has been associated with the expression of intestinal alkaline phosphatase; alkaline phosphatase is a protein responsible for the hydrolysis of monophosphate esters and is a critical feature of the gut defense system, preventing the uptake of bacteria across the intestinal mucosal barrier and thereby maintaining gut homeostasis (Figure 2).
      • Noda S.
      • Yamada A.
      • Nakaoka K.
      • Goseki-Sone M.
      1-alpha,25-Dihydroxyvitamin D(3) up-regulates the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells and may be an important regulator of their expression in gut homeostasis.
      1,25(OH)2D3 increases the expression and activity of alkaline phosphatase and maltase and promotes microvilli formation (Figure 2).
      • Malaguarnera L.
      Vitamin D and microbiota: two sides of the same coin in the immunomodulatory aspects.
      Bacteria can affect vitamin D metabolism and function, as germ-free mice had low vitamin D levels and hypocalcemia, a situation that was reversed when these mice were colonized with other commensal bacterial species.
      • Bora S.A.
      • Kennett M.J.
      • Smith P.B.
      • Patterson A.D.
      • Cantorna M.T.
      The gut microbiota regulates endocrine vitamin D metabolism through fibroblast growth factor 23.
      In parallel, bacteria secrete substances that induce VDR signaling, such as butyrate, which increases VDR expression in the intestinal epithelium in mice,
      • Kellermann L.
      • Jensen K.B.
      • Bergenheim F.
      • Gubatan J.
      • Chou N.D.
      • Moss A.
      • Nielsen O.H.
      Mucosal vitamin D signaling in inflammatory bowel disease.
      and lithocholic acid (produced by Clostridium species in the gut), which suppresses Th1 immune responses and IL-2 production by stimulating VDR signaling in T cells.
      • Pols T.W.H.
      • Puchner T.
      • Korkmaz H.I.
      • Vos M.
      • Soeters M.R.
      • de Vries C.J.M.
      Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the vitamin D receptor.
      Another study showed that commensal and pathogenic bacteria directly modulated VDR expression and localization in colonic epithelium, whereas VDR negatively regulated activation of bacterially induced intestinal NF-κB and attenuated the response to infection in the IECs of Salmonella-infected mice compared with VDR KO mice.
      • Wu S.
      • Liao A.P.
      • Xia Y.
      • Li Y.C.
      • Li J.D.
      • Sartor R.B.
      • Sun J.
      Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine.
      Mouse models fed a vitamin D–deficient diet and models lacking expression of VDR in the intestinal epithelium exhibited higher susceptibility to experimental colitis, which may be due to different mechanisms of vitamin D action.
      • Lagishetty V.
      • Misharin A.V.
      • Liu N.Q.
      • Lisse T.S.
      • Chun R.F.
      • Ouyang Y.
      • McLachlan S.M.
      • Adams J.S.
      • Hewison M.
      Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis.
      ,
      • Liu W.
      • Chen Y.
      • Golan M.A.
      • Annunziata M.L.
      • Du J.
      • Dougherty U.
      • Kong J.
      • Musch M.
      • Huang Y.
      • Pekow J.
      • Zheng C.
      • Bissonnette M.
      • Hanauer S.B.
      • Li Y.C.
      Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis.
      ,
      • Du J.
      • Wei X.
      • Ge X.
      • Chen Y.
      • Li Y.C.
      Microbiota-dependent induction of colonic Cyp27b1 is associated with colonic inflammation: implications of locally produced 1,25-dihydroxyvitamin D3 in inflammatory regulation in the colon.
      Vitamin D–deficient mice developed more severe DSS-induced colitis, had more bacteria in the colonic lumen (>50-fold), and had reduced antimicrobial protein angiogenin-4.
      • Lagishetty V.
      • Misharin A.V.
      • Liu N.Q.
      • Lisse T.S.
      • Chun R.F.
      • Ouyang Y.
      • McLachlan S.M.
      • Adams J.S.
      • Hewison M.
      Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis.
      Diet-induced vitamin D deficiency increased intestinal permeability,
      • Assa A.
      • Vong L.
      • Pinnell L.J.
      • Avitzur N.
      • Johnson-Henry K.C.
      • Sherman P.M.
      Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation.
      and deletion of VDR resulted in more severe disease in a DSS animal model.
      • Wu S.
      • Zhang Y.G.
      • Lu R.
      • Xia Y.
      • Zhou D.
      • Petrof E.O.
      • Claud E.C.
      • Chen D.
      • Chang E.B.
      • Carmeliet G.
      • Sun J.
      Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis.
      VDR/IL-10 double-KO mice developed colitis after 8 weeks compared with single IL-10 or VDR-KO mice, which were relatively healthy at that time,
      • Froicu M.
      • Weaver V.
      • Wynn T.A.
      • McDowell M.A.
      • Welsh J.E.
      • Cantorna M.T.
      A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases.
      whereas epithelial VDR induction resulted in less disease activity.
      • Liu W.
      • Chen Y.
      • Golan M.A.
      • Annunziata M.L.
      • Du J.
      • Dougherty U.
      • Kong J.
      • Musch M.
      • Huang Y.
      • Pekow J.
      • Zheng C.
      • Bissonnette M.
      • Hanauer S.B.
      • Li Y.C.
      Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis.
      However, the above data are at odds with studies showing that VDR-deficient mice had normal gut permeability with normal mucosal morphology in both the large
      • Kim J.-H.
      • Yamaori S.
      • Tanabe T.
      • Johnson C.H.
      • Krausz K.W.
      • Kato S.
      • Gonzalez F.J.
      Implication of intestinal VDR deficiency in inflammatory bowel disease.
      and small intestine.
      • Kühne H.
      • Hause G.
      • Grundmann S.M.
      • Schutkowski A.
      • Brandsch C.
      • Stangl G.I.
      Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression.
      This evidence for experimental colitis in animal models supports the critical role of vitamin D/VDR signaling in maintaining the integrity of the mucosal barrier. In contrast, data from human studies are unclear. VDR expression was found to be reduced in UC and CD colon biopsies and in UC activated inflamed colon, compared with high VDR expression in normal colon epithelial cells.
      • Liu W.
      • Chen Y.
      • Golan M.A.
      • Annunziata M.L.
      • Du J.
      • Dougherty U.
      • Kong J.
      • Musch M.
      • Huang Y.
      • Pekow J.
      • Zheng C.
      • Bissonnette M.
      • Hanauer S.B.
      • Li Y.C.
      Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis.
      ,
      • Zhang Y.G.
      • Lu R.
      • Xia Y.
      • Zhou D.
      • Petrof E.
      • Claud E.C.
      • Sun J.
      Lack of vitamin D receptor leads to hyperfunction of claudin-2 in intestinal inflammatory responses.
      In contrast, other studies
      • Abreu-Delgado Y.
      • Isidro R.A.
      • Torres E.A.
      • González A.
      • Cruz M.L.
      • Isidro A.A.
      • González-Keelan C.I.
      • Medero P.
      • Appleyard C.B.
      Serum vitamin D and colonic vitamin D receptor in inflammatory bowel disease.
      ,
      • Garg M.
      • Royce S.G.
      • Tikellis C.
      • Shallue C.
      • Sluka P.
      • Wardan H.
      • Hosking P.
      • Monagle S.
      • Thomas M.
      • Lubel J.S.
      • Gibson P.R.
      The intestinal vitamin D receptor in inflammatory bowel disease: inverse correlation with inflammation but no relationship with circulating vitamin D status.
      showed no significant differences, although VDR expression was negatively associated with inflammatory activity. It was also shown that in patients with IBD, mucosal inflammation was related to tumor necrosis factor-α–mediated VDR down-regulation and induction of CYP27B1.
      • Du J.
      • Wei X.
      • Ge X.
      • Chen Y.
      • Li Y.C.
      Microbiota-dependent induction of colonic Cyp27b1 is associated with colonic inflammation: implications of locally produced 1,25-dihydroxyvitamin D3 in inflammatory regulation in the colon.
      ,
      • Chen Y.
      • Du J.
      • Zhang Z.
      • Liu T.
      • Shi Y.
      • Ge X.
      • Li Y.C.
      MicroRNA-346 mediates tumor necrosis factor α-induced downregulation of gut epithelial vitamin D receptor in inflammatory bowel diseases.

      Conclusions and Authors' Perspective

      The immunomodulatory and anti-inflammatory effects of vitamin D provide plausible mechanisms for how vitamin D may influence the development, progression, and severity of IBD. Vitamin D contributes to the proper function of the innate and adaptive immune response, intestinal barrier integrity, and gut homeostasis. Specifically, the vitamin D/VDR pathway stimulates specialized epithelial cells (eg, Paneth cells) and lamina propria cells (eg, B cells/plasma cells) to limit the uptake of microbiota and their products into the interstitium. In the event of bacterial invasion of the lamina propria, immune cells, such as macrophages, dendritic cells, and Th1 and type 17 helper T cells, clear the affected tissue by direct or indirect action. After clearance, vitamin D exerts its immunoregulatory properties (ie, inhibits Th1 and type 17 helper T cells, activates T regulatory cells, and restores intestinal homeostasis). At the cellular level, vitamin D modifies the expression of TJ proteins, autophagy, and apoptosis, ensures proper epithelial barrier function, and induces the expression of AMPs. Many of these functions result from the complex ligand-receptor interaction between vitamin D and VDR, which has a major impact on the human microbiome.
      Recently, the gut microbiome has attracted much interest because of rapid advances in sequence-based screening and the humanized gnotobiotic model to study the dynamic functions of the commensal microbiota. Vitamin D modulates the gut microbiota as vitamin D deficiency causes microbial imbalance in the gastrointestinal tract. The antibacterial role of vitamin D is closely linked to the expression of AMPs. The gut microbiota responds to vitamin D supplementation, and various fermentation products of the microbiota appear to promote VDR expression. More robust data on the immunologic, biochemical, functional, and genetic interplay between vitamin D and the human gut microbiota will pave the way to explore the complex function of the gut.
      Although current understanding of the functional properties of the complex gut microbiome remains elusive, the results of recent studies promise to elucidate the etiology of IBD, which could lead to the development of new treatment strategies. However, the use of experimental models to study the mechanisms underlying IBD in humans appears to have limitations. Research on experimental animal models is usually conducted under specific conditions (eg, special diet and pathogen-free conditions). In contrast, patients with IBD often have severe comorbidities, including neuropsychological disorders, cardiovascular disease, and metabolic syndrome.
      • Argollo M.
      • Gilardi D.
      • Peyrin-Biroulet C.
      • Chabot J.-F.
      • Peyrin-Biroulet L.
      • Danese S.
      Comorbidities in inflammatory bowel disease: a call for action.
      In parallel, although humans and mice are similar in some important features of the immune system, they also have crucial differences.
      • Dimitrov V.
      • White J.H.
      Species-specific regulation of innate immunity by vitamin D signaling.
      ,
      • Perlman R.L.
      Mouse models of human disease: an evolutionary perspective.
      In particular, most gene expression motifs (estimated at 80%) are identical in mice and humans, which may be related to the presence of transcriptional regulators that control some of the similarities. On the other hand, the differences limit the translation of results from animal studies to humans, underlining the importance of interspecies inference. In parallel, the favorable results of vitamin D/VDR signaling in both experimental IBD models and human IBD have been associated with changes in the resident microbiota. However, most studies have been of insufficient duration to investigate the potential impact of microbiota resilience.
      • Sommer F.
      • Anderson J.M.
      • Bharti R.
      • Raes J.
      • Rosenstiel P.
      The resilience of the intestinal microbiota influences health and disease.
      For example, after a disruption (harmful or therapeutic) of microbial composition, the altered state may persist or return to the pretreatment state. Exploring the resilience mechanisms that determine long-term community stability and understanding the perturbations are critical elements for a better understanding of the gut and important prerequisites for exploring microbiome-based precision medicine. Thus, the development of novel systems, such as culturing human primary epithelial cells or intestinal organoids derived from patients with IBD, may provide useful tools for the development of alternative therapies for this disease.
      It is clear that the immune system and the microbiome are interconnected, and vitamin D is an essential mediator in this dynamic relationship. Therefore, a comprehensive understanding of the effects of vitamin D deficiency and supplementation on the gut microbiome in health and autoimmunity is needed.

      Author Contributions

      I.A. designed the article, collected the data, wrote the article, and approved the article to be published; M.M., S.F.A., Α.Μ., and K.T. revised the article critically for important intellectual content and approved the article to be published; and C.T. designed the article, revised the article critically for important intellectual content, and approved the article to be published. I.A. is the guarantor of this work and, as such, had full access to all of the data in the study.

      References

        • Hayter S.M.
        • Cook M.C.
        Updated assessment of the prevalence, spectrum and case definition of autoimmune disease.
        Autoimmun Rev. 2012; 11: 754-765
        • Kaplan G.G.
        The global burden of IBD: from 2015 to 2025.
        Nat Rev Gastroenterol Hepatol. 2015; 12: 720-727
        • Ng S.C.
        • Shi H.Y.
        • Hamidi N.
        • Underwood F.E.
        • Tang W.
        • Benchimol E.I.
        • Panaccione R.
        • Ghosh S.
        • Wu J.C.Y.
        • Chan F.K.L.
        • Sung J.J.Y.
        • Kaplan G.G.
        Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies.
        Lancet. 2017; 390: 2769-2778
        • Zhang Y.Z.
        • Li Y.Y.
        Inflammatory bowel disease: pathogenesis.
        World J Gastroenterol. 2014; 20: 91-99
        • Geremia A.
        • Biancheri P.
        • Allan P.
        • Corazza G.R.
        • Di Sabatino A.
        Innate and adaptive immunity in inflammatory bowel disease.
        Autoimmun Rev. 2014; 13: 3-10
        • Rosen C.E.
        • Palm N.W.
        Navigating the microbiota seas: triangulation finds a way forward.
        Cell Host Microbe. 2018; 23: 1-3
        • Vieujean S.
        • Caron B.
        • Haghnejad V.
        • Jouzeau J.Y.
        Impact of the exposome on the epigenome in inflammatory bowel disease patients and animal models.
        Int J Mol Sci. 2022; 23: 7611
        • Triantos C.
        • Aggeletopoulou I.
        • Mantzaris G.J.
        • Mouzaki A.
        Molecular basis of vitamin D action in inflammatory bowel disease.
        Autoimmun Rev. 2022; 21: 103136
        • Mouli V.P.
        • Ananthakrishnan A.N.
        Review article: vitamin D and inflammatory bowel diseases.
        Aliment Pharmacol Ther. 2014; 39: 125-136
        • Hossein-nezhad A.
        • Holick M.F.
        Vitamin D for health: a global perspective.
        Mayo Clin Proc. 2013; 88: 720-755
        • Battault S.
        • Whiting S.J.
        • Peltier S.L.
        • Sadrin S.
        • Gerber G.
        • Maixent J.M.
        Vitamin D metabolism, functions and needs: from science to health claims.
        Eur J Nutr. 2013; 52: 429-441
        • Vernia F.
        • Valvano M.
        • Longo S.
        • Cesaro N.
        • Viscido A.
        • Latella G.
        Vitamin D in inflammatory bowel diseases. mechanisms of action and therapeutic implications.
        Nutrients. 2022; 14: 269
        • Damoiseaux J.
        • Smolders J.
        The engagement between vitamin D and the immune system: is consolidation by a marriage to be expected?.
        EBioMedicine. 2018; 31: 9-10
        • Shreiner A.B.
        • Kao J.Y.
        • Young V.B.
        The gut microbiome in health and in disease.
        Curr Opin Gastroenterol. 2015; 31: 69-75
        • Gomez A.
        • Luckey D.
        • Taneja V.
        The gut microbiome in autoimmunity: sex matters.
        Clin Immunol. 2015; 159: 154-162
        • Yamamoto E.A.
        • Jørgensen T.N.
        Relationships between vitamin D, gut microbiome, and systemic autoimmunity.
        Front Immunol. 2020; 10: 3141
        • Gubatan J.
        • Chou N.D.
        • Nielsen O.H.
        • Moss A.C.
        Systematic review with meta-analysis: association of vitamin D status with clinical outcomes in adult patients with inflammatory bowel disease.
        Aliment Pharmacol Ther. 2019; 50: 1146-1158
        • van der Post S.
        • Jabbar K.S.
        • Birchenough G.
        • Arike L.
        • Akhtar N.
        • Sjovall H.
        • Johansson M.E.V.
        • Hansson G.C.
        Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis.
        Gut. 2019; 68: 2142-2151
        • Li Y.C.
        • Chen Y.
        • Du J.
        Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation.
        J Steroid Biochem Mol Biol. 2015; 148: 179-183
        • Zhu W.
        • Yan J.
        • Zhi C.
        • Zhou Q.
        • Yuan X.
        1,25(OH)(2)D(3) deficiency-induced gut microbial dysbiosis degrades the colonic mucus barrier in Cyp27b1 knockout mouse model.
        Gut Pathog. 2019; 11: 8
        • Fletcher J.
        • Cooper S.C.
        • Ghosh S.
        • Hewison M.
        The role of vitamin D in inflammatory bowel disease: mechanism to management.
        Nutrients. 2019; 11: 1019
        • Triantos C.
        • Aggeletopoulou I.
        • Thomopoulos K.
        • Mouzaki A.
        Vitamin D - liver disease association: biological basis and mechanisms of action.
        Hepatology. 2021; 74: 1065-1073
        • Pike J.W.
        • Christakos S.
        Biology and mechanisms of action of the vitamin D hormone.
        Endocrinol Metab Clin North Am. 2017; 46: 815-843
        • Khundmiri S.J.
        • Murray R.D.
        • Lederer E.
        PTH and vitamin D.
        Compr Physiol. 2016; 6: 561-601
        • Quarles L.D.
        Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism.
        Nat Rev Endocrinol. 2012; 8: 276-286
        • Jones G.
        • Prosser D.E.
        • Kaufmann M.
        Cytochrome P450-mediated metabolism of vitamin D.
        J Lipid Res. 2014; 55: 13-31
        • Clinkenbeard E.L.
        • White K.E.
        Systemic control of bone homeostasis by FGF23 signaling.
        Curr Mol Biol Rep. 2016; 2: 62-71
        • Fakhoury H.M.A.
        • Kvietys P.R.
        • AlKattan W.
        • Anouti F.A.
        • Elahi M.A.
        • Karras S.N.
        • Grant W.B.
        Vitamin D and intestinal homeostasis: barrier, microbiota, and immune modulation.
        J Steroid Biochem Mol Biol. 2020; 200: 105663
        • Wu Z.
        • Liu D.
        • Deng F.
        The role of vitamin D in immune system and inflammatory bowel disease.
        J Inflamm Res. 2022; 15: 3167-3185
        • Carlberg C.
        • Campbell M.J.
        Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor.
        Steroids. 2013; 78: 127-136
        • Carlberg C.
        Vitamin D genomics: from in vitro to in vivo.
        Front Endocrinol. 2018; 9: 250
        • Haussler M.R.
        • Haussler C.A.
        • Bartik L.
        • Whitfield G.K.
        • Hsieh J.C.
        • Slater S.
        • Jurutka P.W.
        Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention.
        Nutr Rev. 2008; 66: 1753-4887
        • Wu S.
        • Liao A.P.
        • Xia Y.
        • Li Y.C.
        • Li J.D.
        • Sartor R.B.
        • Sun J.
        Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine.
        Am J Pathol. 2010; 177: 686-697
        • Campbell M.J.
        Vitamin D and the RNA transcriptome: more than mRNA regulation.
        Front Physiol. 2014; 5: 181
        • Udomsinprasert W.
        • Jittikoon J.
        Vitamin D and liver fibrosis: molecular mechanisms and clinical studies.
        Biomed Pharmacother. 2019; 109: 1351-1360
        • Sassi F.
        • Tamone C.
        • D'Amelio P.
        Vitamin D: nutrient, hormone, and immunomodulator.
        Nutrients. 2018; 10: 1656
        • Jandhyala S.M.
        • Talukdar R.
        • Subramanyam C.
        • Vuyyuru H.
        • Sasikala M.
        • Nageshwar Reddy D.
        Role of the normal gut microbiota.
        World J Gastroenterol. 2015; 21: 8787-8803
        • Morowitz M.J.
        • Carlisle E.
        • Alverdy J.C.
        Contributions of intestinal bacteria to nutrition and metabolism in the critically Ill.
        Surg Clin North Am. 2011; 91: 771-785
        • Becattini S.
        • Taur Y.
        • Pamer E.G.
        Antibiotic-induced changes in the intestinal microbiota and disease.
        Trends Mol Med. 2016; 22: 458-478
        • Pickard J.M.
        • Zeng M.Y.
        • Caruso R.
        • Núñez G.
        Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease.
        Immunol Rev. 2017; 279: 70-89
        • Kvietys P.R.
        • Yaqinuddin A.
        • Al Kattan W.
        Gastrointestinal mucosal defense system: colloquium series on integrated systems physiology.
        in: Colloquium Series on Integrated Systems Physiology: From Molecule to Function to Disease. Morgan & Claypool Life Sciences, 2014: 1-172
        • Schroeder B.O.
        Fight them or feed them: how the intestinal mucus layer manages the gut microbiota.
        Gastroenterol Rep (Oxf). 2019; 7: 3-12
        • Holleran G.
        • Lopetuso L.
        • Petito V.
        The innate and adaptive immune system as targets for biologic therapies in inflammatory bowel disease.
        Int J Mol Sci. 2017; 18: 2020
        • Sommer F.
        • Bäckhed F.
        The gut microbiota - masters of host development and physiology.
        Nat Rev Microbiol. 2013; 11: 227-238
        • Aggeletopoulou I.
        • Konstantakis C.
        • Assimakopoulos S.F.
        • Triantos C.
        The role of the gut microbiota in the treatment of inflammatory bowel diseases.
        Microb Pathog. 2019; 137: 103774
        • Ley R.E.
        • Hamady M.
        • Lozupone C.
        • Turnbaugh P.J.
        • Ramey R.R.
        • Bircher J.S.
        • Schlegel M.L.
        • Tucker T.A.
        • Schrenzel M.D.
        • Knight R.
        • Gordon J.I.
        Evolution of mammals and their gut microbes.
        Science. 2008; 320: 1647-1651
        • Manichanh C.
        • Borruel N.
        • Casellas F.
        • Guarner F.
        The gut microbiota in IBD.
        Nat Rev Gastroenterol Hepatol. 2012; 9: 599-608
        • Martinez-Medina M.
        • Aldeguer X.
        • Lopez-Siles M.
        • González-Huix F.
        • López-Oliu C.
        • Dahbi G.
        • Blanco J.E.
        • Blanco J.
        • Garcia-Gil L.J.
        • Darfeuille-Michaud A.
        Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease.
        Inflamm Bowel Dis. 2009; 15: 872-882
        • Gevers D.
        • Kugathasan S.
        • Denson L.A.
        • Vázquez-Baeza Y.
        • Van Treuren W.
        • Ren B.
        • Schwager E.
        • Knights D.
        • Song S.J.
        • Yassour M.
        • Morgan X.C.
        • Kostic A.D.
        • Luo C.
        • González A.
        • McDonald D.
        • Haberman Y.
        • Walters T.
        • Baker S.
        • Rosh J.
        • Stephens M.
        • Heyman M.
        • Markowitz J.
        • Baldassano R.
        • Griffiths A.
        • Sylvester F.
        • Mack D.
        • Kim S.
        • Crandall W.
        • Hyams J.
        • Huttenhower C.
        • Knight R.
        • Xavier R.J.
        The treatment-naive microbiome in new-onset Crohn's disease.
        Cell Host Microbe. 2014; 15: 382-392
        • Ohkusa T.
        • Yoshida T.
        • Sato N.
        • Watanabe S.
        • Tajiri H.
        • Okayasu I.
        Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis.
        J Med Microbiol. 2009; 58: 535-545
        • Lavelle A.
        • Sokol H.
        Gut microbiota-derived metabolites as key actors in inflammatory bowel disease.
        Nat Rev Gastroenterol Hepatol. 2020; 17: 223-237
        • Zuo T.
        • Ng S.C.
        The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease.
        Front Microbiol. 2018; 9: 2247
        • Ni J.
        • Wu G.D.
        • Albenberg L.
        • Tomov V.T.
        Gut microbiota and IBD: causation or correlation?.
        Nat Rev Gastroenterol Hepatol. 2017; 14: 573-584
        • Charoenngam N.
        • Shirvani A.
        • Kalajian T.A.
        • Song A.
        • Holick M.F.
        The effect of various doses of oral vitamin D(3) supplementation on gut microbiota in healthy adults: a randomized, double-blinded, dose-response study.
        Anticancer Res. 2020; 40: 551-556
        • Szymczak-Tomczak A.
        • Ratajczak A.E.
        • Kaczmarek-Ryś M.
        • Hryhorowicz S.
        • Rychter A.M.
        • Zawada A.
        • Słomski R.
        • Dobrowolska A.
        • Krela-Kaźmierczak I.
        Pleiotropic effects of vitamin D in patients with inflammatory bowel diseases.
        J Clin Med. 2022; 11: 5715
        • Cantorna M.T.
        • Snyder L.
        • Arora J.
        Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis.
        Crit Rev Biochem Mol Biol. 2019; 54: 184-192
        • Lagishetty V.
        • Misharin A.V.
        • Liu N.Q.
        • Lisse T.S.
        • Chun R.F.
        • Ouyang Y.
        • McLachlan S.M.
        • Adams J.S.
        • Hewison M.
        Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis.
        Endocrinology. 2010; 151: 2423-2432
        • Ooi J.H.
        • Li Y.
        • Rogers C.J.
        • Cantorna M.T.
        Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis.
        J Nutr. 2013; 143: 1679-1686
        • Cantorna M.T.
        • Lin Y.D.
        • Arora J.
        • Bora S.
        • Tian Y.
        • Nichols R.G.
        • Patterson A.D.
        Vitamin D regulates the microbiota to control the numbers of RORγt/FoxP3+ regulatory T cells in the colon.
        Front Immunol. 2019; 10: 1772
        • Garg M.
        • Hendy P.
        • Ding J.N.
        • Shaw S.
        • Hold G.
        • Hart A.
        The effect of vitamin D on intestinal inflammation and faecal microbiota in patients with ulcerative colitis.
        J Crohns Colitis. 2018; 12: 963-972
        • Schäffler H.
        • Herlemann D.P.
        • Klinitzke P.
        • Berlin P.
        • Kreikemeyer B.
        • Jaster R.
        • Lamprecht G.
        Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn's disease patients, but not in healthy controls.
        J Dig Dis. 2018; 19: 225-234
        • Soltys K.
        • Stuchlikova M.
        • Hlavaty T.
        • Gaalova B.
        • Budis J.
        • Gazdarica J.
        • Krajcovicova A.
        • Zelinkova Z.
        • Szemes T.
        • Kuba D.
        • Drahovska H.
        • Turna J.
        • Stuchlik S.
        Seasonal changes of circulating 25-hydroxyvitamin D correlate with the lower gut microbiome composition in inflammatory bowel disease patients.
        Sci Rep. 2020; 10: 6024
        • Olbjørn C.
        • Cvancarova Småstuen M.
        • Thiis-Evensen E.
        • Nakstad B.
        • Vatn M.H.
        • Jahnsen J.
        • Ricanek P.
        • Vatn S.
        • Moen A.E.F.
        • Tannæs T.M.
        • Lindstrøm J.C.
        • Söderholm J.D.
        • Halfvarson J.
        • Gomollón F.
        • Casén C.
        • Karlsson M.K.
        • Kalla R.
        • Adams A.T.
        • Satsangi J.
        • Perminow G.
        Fecal microbiota profiles in treatment-naïve pediatric inflammatory bowel disease - associations with disease phenotype, treatment, and outcome.
        Clin Exp Gastroenterol. 2019; 12: 37-49
        • Zhou Y.
        • Zhi F.
        Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis.
        Biomed Res Int. 2016; 5828959: 24
        • Zhai Z.
        • Dong W.
        • Sun Y.
        • Gu Y.
        • Ma J.
        • Wang B.
        • Cao H.
        Vitamin-microbiota crosstalk in intestinal inflammation and carcinogenesis.
        Nutrients. 2022; 14: 3383
        • Liu M.
        • Chen Q.
        • Sun Y.
        • Zeng L.
        • Wu H.
        • Gu Q.
        • Li P.
        Probiotic potential of a folate-producing strain Latilactobacillus sakei LZ217 and its modulation effects on human gut microbiota.
        Foods. 2022; 11: 234
        • Costanzo M.
        • Cesi V.
        • Palone F.
        • Pierdomenico M.
        • Colantoni E.
        • Leter B.
        • Vitali R.
        • Negroni A.
        • Cucchiara S.
        • Stronati L.
        Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation.
        Benef Microbes. 2018; 9: 389-399
        • Shang M.
        • Sun J.
        Vitamin D/VDR, probiotics, and gastrointestinal diseases.
        Curr Med Chem. 2017; 24: 876-887
        • Ishizawa M.
        • Akagi D.
        • Makishima M.
        Lithocholic acid is a vitamin D receptor ligand that acts preferentially in the ileum.
        Int J Mol Sci. 2018; 19: 1975
        • Lu R.
        • Shang M.
        • Zhang Y.G.
        • Jiao Y.
        • Xia Y.
        • Garrett S.
        • Bakke D.
        • Bäuerl C.
        • Martinez G.P.
        • Kim C.H.
        • Kang S.M.
        • Sun J.
        Lactic acid bacteria isolated from Korean kimchi activate the vitamin D receptor-autophagy signaling pathways.
        Inflamm Bowel Dis. 2020; 26: 1199-1211
        • Abboud M.
        • Rizk R.
        • AlAnouti F.
        • Papandreou D.
        • Haidar S.
        • Mahboub N.
        The health effects of vitamin D and probiotic co-supplementation: a systematic review of randomized controlled trials.
        Nutrients. 2021; 13: 111
        • Bakke D.
        • Chatterjee I.
        • Agrawal A.
        • Dai Y.
        • Sun J.
        Regulation of microbiota by vitamin D receptor: a nuclear weapon in metabolic diseases.
        Nucl Receptor Res. 2018; 5: 101377
        • Pagnini C.
        • Di Paolo M.C.
        • Graziani M.G.
        • Delle Fave G.
        Probiotics and vitamin D/vitamin D receptor pathway interaction: potential therapeutic implications in inflammatory bowel disease.
        Front Pharmacol. 2021; 12: 747856
        • Suzuki T.
        Regulation of the intestinal barrier by nutrients: the role of tight junctions.
        Anim Sci J. 2020; 91: e13357
        • Kong J.
        • Zhang Z.
        • Musch M.W.
        • Ning G.
        • Sun J.
        • Hart J.
        • Bissonnette M.
        • Li Y.C.
        Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier.
        Am J Physiol Gastrointest Liver Physiol. 2008; 294: 225
        • He L.
        • Liu T.
        • Shi Y.
        • Tian F.
        • Hu H.
        • Deb D.K.
        • Chen Y.
        • Bissonnette M.
        • Li Y.C.
        Gut epithelial vitamin D receptor regulates microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis.
        Endocrinology. 2018; 159: 967-979
        • Meckel K.
        • Li Y.C.
        • Lim J.
        • Kocherginsky M.
        • Weber C.
        • Almoghrabi A.
        • Chen X.
        • Kaboff A.
        • Sadiq F.
        • Hanauer S.B.
        • Cohen R.D.
        • Kwon J.
        • Rubin D.T.
        • Hanan I.
        • Sakuraba A.
        • Yen E.
        • Bissonnette M.
        • Pekow J.
        Serum 25-hydroxyvitamin D concentration is inversely associated with mucosal inflammation in patients with ulcerative colitis.
        Am J Clin Nutr. 2016; 104: 113-120
        • Yang Y.
        • Cui X.
        • Li J.
        • Wang H.
        • Li Y.
        • Chen Y.
        • Zhang H.
        Clinical evaluation of vitamin D status and its relationship with disease activity and changes of intestinal immune function in patients with Crohn's disease in the Chinese population.
        Scand J Gastroenterol. 2021; 56: 20-29
        • Zhao H.
        • Zhang H.
        • Wu H.
        • Li H.
        • Liu L.
        • Guo J.
        • Li C.
        • Shih D.Q.
        • Zhang X.
        Protective role of 1,25(OH)2 vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice.
        BMC Gastroenterol. 2012; 12: 12-57
        • Lee C.
        • Lau E.
        • Chusilp S.
        • Filler R.
        • Li B.
        • Zhu H.
        • Yamoto M.
        • Pierro A.
        Protective effects of vitamin D against injury in intestinal epithelium.
        Pediatr Surg Int. 2019; 35: 1395-1401
        • Dong S.
        • Singh T.P.
        • Wei X.
        • Yao H.
        • Wang H.
        Protective effect of 1,25-dihydroxy vitamin D3 on pepsin-trypsin-resistant gliadin-induced tight junction injuries.
        Dig Dis Sci. 2018; 63: 92-104
        • Liu T.
        • Shi Y.
        • Du J.
        • Ge X.
        • Teng X.
        • Liu L.
        • Wang E.
        • Zhao Q.
        Vitamin D treatment attenuates 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis but not oxazolone-induced colitis.
        Sci Rep. 2016; 6: 32889
        • Stio M.
        • Retico L.
        • Annese V.
        • Bonanomi A.G.
        Vitamin D regulates the tight-junction protein expression in active ulcerative colitis.
        Scand J Gastroenterol. 2016; 51: 1193-1199
        • Chen S.W.
        • Wang P.Y.
        • Zhu J.
        • Chen G.W.
        • Zhang J.L.
        • Chen Z.Y.
        • Zuo S.
        • Liu Y.C.
        • Pan Y.S.
        Protective effect of 1,25-dihydroxyvitamin d3 on lipopolysaccharide-induced intestinal epithelial tight junction injury in caco-2 cell monolayers.
        Inflammation. 2015; 38: 375-383
        • Chatterjee I.
        • Zhang Y.
        • Zhang J.
        • Lu R.
        • Xia Y.
        • Sun J.
        Overexpression of vitamin D receptor in intestinal epithelia protects against colitis via upregulating tight junction protein claudin 15.
        J Crohns Colitis. 2021; 15: 1720-1736
        • Zhang Y.G.
        • Wu S.
        • Lu R.
        • Zhou D.
        • Zhou J.
        • Carmeliet G.
        • Petrof E.
        • Claud E.C.
        • Sun J.
        Tight junction CLDN2 gene is a direct target of the vitamin D receptor.
        Sci Rep. 2015; 5: 10642
        • Kühne H.
        • Hause G.
        • Grundmann S.M.
        • Schutkowski A.
        • Brandsch C.
        • Stangl G.I.
        Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression.
        Nutr Res. 2016; 36: 184-192
        • Cunningham K.E.
        • Turner J.R.
        Myosin light chain kinase: pulling the strings of epithelial tight junction function.
        Ann N Y Acad Sci. 2012; 1: 34-42
        • Du J.
        • Chen Y.
        • Shi Y.
        • Liu T.
        • Cao Y.
        • Tang Y.
        • Ge X.
        • Nie H.
        • Zheng C.
        • Li Y.C.
        1,25-Dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway.
        Inflamm Bowel Dis. 2015; 21: 2495-2506
        • Sun J.
        VDR/vitamin D receptor regulates autophagic activity through ATG16L1.
        Autophagy. 2016; 12: 1057-1058
        • Su D.
        • Nie Y.
        • Zhu A.
        • Chen Z.
        • Wu P.
        • Zhang L.
        • Luo M.
        • Sun Q.
        • Cai L.
        • Lai Y.
        • Xiao Z.
        • Duan Z.
        • Zheng S.
        • Wu G.
        • Hu R.
        • Tsukamoto H.
        • Lugea A.
        • Liu Z.
        • Pandol S.J.
        • Han Y.P.
        Vitamin D signaling through induction of Paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models.
        Front Physiol. 2016; 7: 498
        • Lu R.
        • Zhang Y.G.
        • Xia Y.
        • Zhang J.
        • Kaser A.
        • Blumberg R.
        • Sun J.
        Paneth cell alertness to pathogens maintained by vitamin D receptors.
        Gastroenterology. 2021; 160: 1269-1283
        • Wu S.
        • Zhang Y.G.
        • Lu R.
        • Xia Y.
        • Zhou D.
        • Petrof E.O.
        • Claud E.C.
        • Chen D.
        • Chang E.B.
        • Carmeliet G.
        • Sun J.
        Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis.
        Gut. 2015; 64: 1082-1094
        • Lu R.
        • Zhang Y.G.
        • Xia Y.
        • Sun J.
        Imbalance of autophagy and apoptosis in intestinal epithelium lacking the vitamin D receptor.
        FASEB J. 2019; 33: 11845-11856
        • McGillis L.
        • Bronte-Tinkew D.M.
        • Dang F.
        • Capurro M.
        • Prashar A.
        • Ricciuto A.
        • Greenfield L.
        • Lozano-Ruf A.
        • Siddiqui I.
        • Hsieh A.
        • Church P.
        • Walters T.
        • Roth D.E.
        • Griffiths A.
        • Philpott D.
        • Jones N.L.
        Vitamin D deficiency enhances expression of autophagy-regulating miR-142-3p in mouse and "involved" IBD patient intestinal tissues.
        Am J Physiol Gastrointest Liver Physiol. 2021; 321: G171-G184
        • Riner K.
        • Boos A.
        • Hässig M.
        • Liesegang A.
        Vitamin D receptor distribution in intestines of domesticated sheep Ovis ammon f. aries.
        J Morphol. 2008; 269: 144-152
        • Paz H.B.
        • Tisdale A.S.
        • Danjo Y.
        • Spurr-Michaud S.J.
        • Argüeso P.
        • Gipson I.K.
        The role of calcium in mucin packaging within goblet cells.
        Exp Eye Res. 2003; 77: 69-75
        • Mandle H.B.
        • Jahan F.A.
        • Bostick R.M.
        • Baron J.A.
        • Barry E.L.
        • Yacoub R.
        • Merrill J.
        • Rutherford R.E.
        • Seabrook M.E.
        • Fedirko V.
        Effects of supplemental calcium and vitamin D on tight-junction proteins and mucin-12 expression in the normal rectal mucosa of colorectal adenoma patients.
        Mol Carcinog. 2019; 58: 1279-1290
        • Dimitrov V.
        • White J.H.
        Vitamin D signaling in intestinal innate immunity and homeostasis.
        Mol Cell Endocrinol. 2017; 453: 68-78
        • Di Rosa M.
        • Malaguarnera G.
        • De Gregorio C.
        • Palumbo M.
        • Nunnari G.
        • Malaguarnera L.
        Immuno-modulatory effects of vitamin D3 in human monocyte and macrophages.
        Cell Immunol. 2012; 280: 36-43
        • Pararasa C.
        • Zhang N.
        • Tull T.J.
        • Chong M.H.A.
        • Siu J.H.Y.
        • Guesdon W.
        • Chavele K.M.
        • Sanderson J.D.
        • Langmead L.
        • Kok K.
        • Spencer J.
        • Vossenkamper A.
        Reduced CD27(-)IgD(-) B cells in blood and raised CD27(-)IgD(-) B cells in gut-associated lymphoid tissue in inflammatory bowel disease.
        Front Immunol. 2019; 10: 361
        • Zhu J.
        • Yamane H.
        • Paul W.E.
        Differentiation of effector CD4 T cell populations (∗).
        Annu Rev Immunol. 2010; 28: 445-489
        • Mao K.
        • Baptista A.P.
        • Tamoutounour S.
        • Zhuang L.
        • Bouladoux N.
        • Martins A.J.
        • Huang Y.
        • Gerner M.Y.
        • Belkaid Y.
        • Germain R.N.
        Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism.
        Nature. 2018; 554: 255-259
        • Imam T.
        • Park S.
        • Kaplan M.H.
        • Olson M.R.
        Effector T helper cell subsets in inflammatory bowel diseases.
        Front Immunol. 2018; 9: 1212
        • Lagishetty V.
        • Chun R.F.
        • Liu N.Q.
        • Lisse T.S.
        • Adams J.S.
        • Hewison M.
        1alpha-Hydroxylase and innate immune responses to 25-hydroxyvitamin D in colonic cell lines.
        J Steroid Biochem Mol Biol. 2010; 121: 228-233
        • Wampach L.
        • Heintz-Buschart A.
        • Hogan A.
        • Muller E.E.L.
        • Narayanasamy S.
        • Laczny C.C.
        • Hugerth L.W.
        • Bindl L.
        • Bottu J.
        • Andersson A.F.
        • de Beaufort C.
        • Wilmes P.
        Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life.
        Front Microbiol. 2017; 8: 738
        • Liu P.T.
        • Stenger S.
        • Li H.
        • Wenzel L.
        • Tan B.H.
        • Krutzik S.R.
        • Ochoa M.T.
        • Schauber J.
        • Wu K.
        • Meinken C.
        • Kamen D.L.
        • Wagner M.
        • Bals R.
        • Steinmeyer A.
        • Zügel U.
        • Gallo R.L.
        • Eisenberg D.
        • Hewison M.
        • Hollis B.W.
        • Adams J.S.
        • Bloom B.R.
        • Modlin R.L.
        Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response.
        Science. 2006; 311: 1770-1773
        • Svensson D.
        • Nebel D.
        • Nilsson B.O.
        Vitamin D3 modulates the innate immune response through regulation of the hCAP-18/LL-37 gene expression and cytokine production.
        Inflamm Res. 2016; 65: 25-32
        • Wang T.T.
        • Nestel F.P.
        • Bourdeau V.
        • Nagai Y.
        • Wang Q.
        • Liao J.
        • Tavera-Mendoza L.
        • Lin R.
        • Hanrahan J.W.
        • Mader S.
        • White J.H.
        Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression.
        J Immunol. 2004; 173: 2909-2912
        • Wang T.T.
        • Dabbas B.
        • Laperriere D.
        • Bitton A.J.
        • Soualhine H.
        • Tavera-Mendoza L.E.
        • Dionne S.
        • Servant M.J.
        • Bitton A.
        • Seidman E.G.
        • Mader S.
        • Behr M.A.
        • White J.H.
        Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease.
        J Biol Chem. 2010; 285: 2227-2231
        • Dimitrov V.
        • White J.H.
        Species-specific regulation of innate immunity by vitamin D signaling.
        J Steroid Biochem Mol Biol. 2016; 164: 246-253
        • Voss E.
        • Wehkamp J.
        • Wehkamp K.
        • Stange E.F.
        • Schröder J.M.
        • Harder J.
        NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2.
        J Biol Chem. 2006; 281: 2005-2011
        • Jäger S.
        • Stange E.F.
        • Wehkamp J.
        Inflammatory bowel disease: an impaired barrier disease.
        Langenbecks Arch Surg. 2013; 398: 1-12
        • Gubatan J.
        • Mehigan G.A.
        • Villegas F.
        • Mitsuhashi S.
        • Longhi M.S.
        • Malvar G.
        • Csizmadia E.
        • Robson S.
        • Moss A.C.
        Cathelicidin mediates a protective role of vitamin d in ulcerative colitis and human colonic epithelial cells.
        Inflamm Bowel Dis. 2020; 26: 885-897
        • Wells J.M.
        • Brummer R.J.
        • Derrien M.
        • MacDonald T.T.
        • Troost F.
        • Cani P.D.
        • Theodorou V.
        • Dekker J.
        • Méheust A.
        • de Vos W.M.
        • Mercenier A.
        • Nauta A.
        • Garcia-Rodenas C.L.
        Homeostasis of the gut barrier and potential biomarkers.
        Am J Physiol Gastrointest Liver Physiol. 2017; 312: G171-G193
        • Campbell Y.
        • Fantacone M.L.
        • Gombart A.F.
        Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism.
        Eur J Nutr. 2012; 51: 899-907
        • Szaleniec M.
        • Wojtkiewicz A.M.
        • Bernhardt R.
        • Borowski T.
        • Donova M.
        Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms.
        Appl Microbiol Biotechnol. 2018; 102: 8153-8171
        • Bora S.A.
        • Kennett M.J.
        • Smith P.B.
        • Patterson A.D.
        • Cantorna M.T.
        The gut microbiota regulates endocrine vitamin D metabolism through fibroblast growth factor 23.
        Front Immunol. 2018; 9: 408
        • Golan M.A.
        • Liu W.
        • Shi Y.
        • Chen L.
        • Wang J.
        • Liu T.
        • Li Y.C.
        Transgenic expression of vitamin D receptor in gut epithelial cells ameliorates spontaneous colitis caused by interleukin-10 deficiency.
        Dig Dis Sci. 2015; 60: 1941-1947
        • Noda S.
        • Yamada A.
        • Nakaoka K.
        • Goseki-Sone M.
        1-alpha,25-Dihydroxyvitamin D(3) up-regulates the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells and may be an important regulator of their expression in gut homeostasis.
        Nutr Res. 2017; 46: 59-67
        • Malaguarnera L.
        Vitamin D and microbiota: two sides of the same coin in the immunomodulatory aspects.
        Int Immunopharmacol. 2020; 79: 106112
        • Kellermann L.
        • Jensen K.B.
        • Bergenheim F.
        • Gubatan J.
        • Chou N.D.
        • Moss A.
        • Nielsen O.H.
        Mucosal vitamin D signaling in inflammatory bowel disease.
        Autoimmun Rev. 2020; 19: 102672
        • Pols T.W.H.
        • Puchner T.
        • Korkmaz H.I.
        • Vos M.
        • Soeters M.R.
        • de Vries C.J.M.
        Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the vitamin D receptor.
        PLoS One. 2017; 12: e0176715
        • Liu W.
        • Chen Y.
        • Golan M.A.
        • Annunziata M.L.
        • Du J.
        • Dougherty U.
        • Kong J.
        • Musch M.
        • Huang Y.
        • Pekow J.
        • Zheng C.
        • Bissonnette M.
        • Hanauer S.B.
        • Li Y.C.
        Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis.
        J Clin Invest. 2013; 123: 3983-3996
        • Du J.
        • Wei X.
        • Ge X.
        • Chen Y.
        • Li Y.C.
        Microbiota-dependent induction of colonic Cyp27b1 is associated with colonic inflammation: implications of locally produced 1,25-dihydroxyvitamin D3 in inflammatory regulation in the colon.
        Endocrinology. 2017; 158: 4064-4075
        • Assa A.
        • Vong L.
        • Pinnell L.J.
        • Avitzur N.
        • Johnson-Henry K.C.
        • Sherman P.M.
        Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation.
        J Infect Dis. 2014; 210: 1296-1305
        • Froicu M.
        • Weaver V.
        • Wynn T.A.
        • McDowell M.A.
        • Welsh J.E.
        • Cantorna M.T.
        A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases.
        Mol Endocrinol. 2003; 17: 2386-2392
        • Kim J.-H.
        • Yamaori S.
        • Tanabe T.
        • Johnson C.H.
        • Krausz K.W.
        • Kato S.
        • Gonzalez F.J.
        Implication of intestinal VDR deficiency in inflammatory bowel disease.
        Biochim Biophys Acta. 2013; 1830: 2118-2128
        • Zhang Y.G.
        • Lu R.
        • Xia Y.
        • Zhou D.
        • Petrof E.
        • Claud E.C.
        • Sun J.
        Lack of vitamin D receptor leads to hyperfunction of claudin-2 in intestinal inflammatory responses.
        Inflamm Bowel Dis. 2019; 25: 97-110
        • Abreu-Delgado Y.
        • Isidro R.A.
        • Torres E.A.
        • González A.
        • Cruz M.L.
        • Isidro A.A.
        • González-Keelan C.I.
        • Medero P.
        • Appleyard C.B.
        Serum vitamin D and colonic vitamin D receptor in inflammatory bowel disease.
        World J Gastroenterol. 2016; 22: 3581-3591
        • Garg M.
        • Royce S.G.
        • Tikellis C.
        • Shallue C.
        • Sluka P.
        • Wardan H.
        • Hosking P.
        • Monagle S.
        • Thomas M.
        • Lubel J.S.
        • Gibson P.R.
        The intestinal vitamin D receptor in inflammatory bowel disease: inverse correlation with inflammation but no relationship with circulating vitamin D status.
        Therap Adv Gastroenterol. 2019; 12 (1756284818822566)
        • Chen Y.
        • Du J.
        • Zhang Z.
        • Liu T.
        • Shi Y.
        • Ge X.
        • Li Y.C.
        MicroRNA-346 mediates tumor necrosis factor α-induced downregulation of gut epithelial vitamin D receptor in inflammatory bowel diseases.
        Inflamm Bowel Dis. 2014; 20: 1910-1918
        • Argollo M.
        • Gilardi D.
        • Peyrin-Biroulet C.
        • Chabot J.-F.
        • Peyrin-Biroulet L.
        • Danese S.
        Comorbidities in inflammatory bowel disease: a call for action.
        Lancet Gastroenterol Hepatol. 2019; 4: 643-654
        • Perlman R.L.
        Mouse models of human disease: an evolutionary perspective.
        Evol Med Public Health. 2016; 2016: 170-176
        • Sommer F.
        • Anderson J.M.
        • Bharti R.
        • Raes J.
        • Rosenstiel P.
        The resilience of the intestinal microbiota influences health and disease.
        Nat Rev Microbiol. 2017; 15: 630-638