Advertisement
Regular Article|Articles in Press

Prolonged antibiotic exposure during adolescence dysregulates liver metabolism and promotes adiposity in mice

  • Matthew D. Carson
    Affiliations
    Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC,USA

    Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina

    Department of Stomatology, College of Medicine, Medical University of South Carolina
    Search for articles by this author
  • Amy J. Warner
    Affiliations
    Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC,USA

    Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina

    Department of Stomatology, College of Medicine, Medical University of South Carolina
    Search for articles by this author
  • Vincenza L. Geiser
    Affiliations
    Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC,USA

    Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina

    Department of Stomatology, College of Medicine, Medical University of South Carolina
    Search for articles by this author
  • Jessica D. Hathaway-Schrader
    Affiliations
    Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC,USA

    Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina

    Department of Stomatology, College of Medicine, Medical University of South Carolina
    Search for articles by this author
  • Alexander V. Alekseyenko
    Affiliations
    Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC,USA

    Division of Division of Biomedical Informatics Center, Program for Human Microbiome Research, Department of Public Health Sciences, College of Medicine, Medical University of South Carolina

    Department of Healthcare Leadership and Management, College of Health Professions, Medical University of South Carolina
    Search for articles by this author
  • Julie Marshall
    Affiliations
    Department of Stomatology-Division of Population Oral Health, College of Dental Medicine, Medical University of South Carolina

    Department of Public Health Sciences, College of Medicine, Medical University of South Carolina
    Search for articles by this author
  • Caroline Westwater
    Affiliations
    Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC,USA

    Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina
    Search for articles by this author
  • Chad M. Novince
    Correspondence
    Corresponding author: Chad M. Novince, Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA Tel: +1-843-792-4957;
    Affiliations
    Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC,USA

    Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina

    Department of Stomatology, College of Medicine, Medical University of South Carolina
    Search for articles by this author

      Abstract

      Antibiotic administration during early life has been shown to have lasting effects on the gut microbiota, which have been linked to sustained alterations in liver metabolism and adiposity. Recent investigations have discerned that the gut microbiota continues to develop towards an adult-like profile during adolescence. However, the impact of antibiotic exposure during adolescence on metabolism and adiposity is unclear. We performed a retrospective analysis of Medicaid claims data, which revealed tetracycline class antibiotics are commonly prescribed for the systemic treatment of adolescent acne. Study purpose was to discern the impact of a prolonged tetracycline antibiotic exposure during adolescence on the gut microbiota, liver metabolism, and adiposity. Male C57BL/6T specific-pathogen-free mice were administered a tetracycline antibiotic during the pubertal/postpubertal adolescent growth phase. Groups were euthanized at timepoints to assess immediate and sustained antibiotic treatment effects. Antibiotic exposure during adolescence caused lasting genera-level shifts in the intestinal bacteriome and persistent dysregulation of metabolic pathways in the liver. Dysregulated hepatic metabolism was linked to sustained disruption of the intestinal FXR-FGF15 axis, a gut-liver endocrine axis that supports metabolic homeostasis. Antibiotics exposure during adolescence increased subcutaneous, visceral, and marrow adiposity, which intriguingly manifested following antibiotic therapy. This preclinical work highlights that prolonged antibiotic courses for the clinical treatment of adolescent acne may have unintended deleterious effects on liver metabolism and adiposity.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sommer F
        • Backhed F
        The gut microbiota--masters of host development and physiology.
        Nature reviews Microbiology. 2013; 11: 227-238
        • Schroeder BO
        • Bäckhed F
        Signals from the gut microbiota to distant organs in physiology and disease.
        Nat Med. 2016; 22: 1079-1089
        • Krautkramer KA
        • Fan J
        • Bäckhed F
        Gut microbial metabolites as multi-kingdom intermediates.
        Nature reviews Microbiology. 2021; 19: 77-94
        • Fan Y
        • Pedersen O
        Gut microbiota in human metabolic health and disease.
        Nature reviews Microbiology. 2021; 19: 55-71
        • Bäckhed F
        • Ding H
        • Wang T
        • Hooper LV
        • Koh GY
        • Nagy A
        • Semenkovich CF
        • Gordon JI
        The gut microbiota as an environmental factor that regulates fat storage.
        Proc Natl Acad Sci U S A. 2004; 101: 15718-15723
        • Turnbaugh PJ
        • Bäckhed F
        • Fulton L
        • Gordon JI
        Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome.
        Cell Host Microbe. 2008; 3: 213-223
        • Turnbaugh PJ
        • Ley RE
        • Mahowald MA
        • Magrini V
        • Mardis ER
        • Gordon JI
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1031
        • Ianiro G
        • Tilg H
        • Gasbarrini A
        Antibiotics as deep modulators of gut microbiota: between good and evil.
        Gut. 2016; 65: 1906-1915
        • Becattini S
        • Taur Y
        • Pamer EG
        Antibiotic-Induced Changes in the Intestinal Microbiota and Disease.
        Trends in molecular medicine. 2016; 22: 458-478
        • Sommer F
        • Anderson JM
        • Bharti R
        • Raes J
        • Rosenstiel P
        The resilience of the intestinal microbiota influences health and disease.
        Nature reviews Microbiology. 2017; 15: 630-638
        • Fassarella M
        • Blaak EE
        • Penders J
        • Nauta A
        • Smidt H
        • Zoetendal EG
        Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health.
        Gut. 2021; 70: 595-605
        • Cho I
        • Yamanishi S
        • Cox L
        • Methé BA
        • Zavadil J
        • Li K
        • Gao Z
        • Mahana D
        • Raju K
        • Teitler I
        • Li H
        • Alekseyenko AV
        • Blaser MJ
        Antibiotics in early life alter the murine colonic microbiome and adiposity.
        Nature. 2012; 488: 621-626
        • Cox LM
        • Yamanishi S
        • Sohn J
        • Alekseyenko AV
        • Leung JM
        • Cho I
        • Kim SG
        • Li H
        • Gao Z
        • Mahana D
        • Zárate Rodriguez JG
        • Rogers AB
        • Robine N
        • Loke P
        • Blaser MJ
        Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences.
        Cell. 2014; 158: 705-721
        • Ajslev TA
        • Andersen CS
        • Gamborg M
        • Sørensen TI
        • Jess T
        Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics.
        Int J Obes (Lond). 2011; 35: 522-529
        • Azad MB
        • Bridgman SL
        • Becker AB
        • Kozyrskyj AL
        Infant antibiotic exposure and the development of childhood overweight and central adiposity.
        Int J Obes (Lond). 2014; 38: 1290-1298
        • Bailey LC
        • Forrest CB
        • Zhang P
        • Richards TM
        • Livshits A
        • DeRusso PA
        Association of antibiotics in infancy with early childhood obesity.
        JAMA pediatrics. 2014; 168: 1063-1069
        • Vallianou N
        • Dalamaga M
        • Stratigou T
        • Karampela I
        • Tsigalou C
        Do Antibiotics Cause Obesity Through Long-term Alterations in the Gut Microbiome? A Review of Current Evidence.
        Curr Obes Rep. 2021; 10: 244-262
        • Koenig JE
        • Spor A
        • Scalfone N
        • Fricker AD
        • Stombaugh J
        • Knight R
        • Angenent LT
        • Ley RE
        Succession of microbial consortia in the developing infant gut microbiome.
        Proceedings of the National Academy of Sciences. 2011; 108: 4578-4585
        • Yatsunenko T
        • Rey FE
        • Manary MJ
        • Trehan I
        • Dominguez-Bello MG
        • Contreras M
        • Magris M
        • Hidalgo G
        • Baldassano RN
        • Anokhin AP
        • Heath AC
        • Warner B
        • Reeder J
        • Kuczynski J
        • Caporaso JG
        • Lozupone CA
        • Lauber C
        • Clemente JC
        • Knights D
        • Knight R
        • Gordon JI
        Human gut microbiome viewed across age and geography.
        Nature. 2012; 486: 222-227
        • Moran-Ramos S
        • Lopez-Contreras BE
        • Villarruel-Vazquez R
        • Ocampo-Medina E
        • Macias-Kauffer L
        • Martinez-Medina JN
        • Villamil-Ramirez H
        • León-Mimila P
        • Del Rio-Navarro BE
        • Ibarra-Gonzalez I
        • Vela-Amieva M
        • Gomez-Perez FJ
        • Velazquez-Cruz R
        • Salmeron J
        • Reyes-Castillo Z
        • Aguilar-Salinas C
        • Canizales-Quinteros S
        Environmental and intrinsic factors shaping gut microbiota composition and diversity and its relation to metabolic health in children and early adolescents: A population-based study.
        Gut microbes. 2020; 11: 900-917
        • Korpela K
        • Kallio S
        • Salonen A
        • Hero M
        • Kukkonen AK
        • Miettinen PJ
        • Savilahti E
        • Kohva E
        • Kariola L
        • Suutela M
        • Tarkkanen A
        • de Vos WM
        • Raivio T
        • Kuitunen M
        Gut microbiota develop towards an adult profile in a sex-specific manner during puberty.
        Scientific Reports. 2021; 1123297
        • Carrizales-Sánchez AK
        • García-Cayuela T
        • Hernández-Brenes C
        • Senés-Guerrero C
        Gut microbiota associations with metabolic syndrome and relevance of its study in pediatric subjects.
        Gut Microbes. 2021; 131960135
        • Del Chierico F
        • Abbatini F
        • Russo A
        • Quagliariello A
        • Reddel S
        • Capoccia D
        • Caccamo R
        • Ginanni Corradini S
        • Nobili V
        • De Peppo F
        • Dallapiccola B
        • Leonetti F
        • Silecchia G
        • Putignani L
        Gut Microbiota Markers in Obese Adolescent and Adult Patients: Age-Dependent Differential Patterns.
        Front Microbiol. 2018; 9: 1210
        • Klimenko ES
        • Belkova NL
        • Romanitsa AI
        • Pogodina AV
        • Rychkova LV
        • Darenskaya MA
        Differences in Gut Microbiota Composition and Predicted Metabolic Functions: a Pilot Study of Adolescents with Normal Weight and Obesity.
        Bulletin of Experimental Biology and Medicine. 2022; 173: 628-632
        • Leong KSW
        • Jayasinghe TN
        • Wilson BC
        • Derraik JGB
        • Albert BB
        • Chiavaroli V
        • Svirskis DM
        • Beck KL
        • Conlon CA
        • Jiang Y
        • Schierding W
        • Vatanen T
        • Holland DJ
        • O’Sullivan JM
        • Cutfield WS
        Effects of Fecal Microbiome Transfer in Adolescents With Obesity: The Gut Bugs Randomized Controlled Trial.
        JAMA Network Open. 2020; 3: e2030415-e
        • Hardin AP
        • Hackell JM
        Age Limit of Pediatrics.
        Pediatrics. 2017; 140
        • Bhate K
        • Williams HC
        Epidemiology of acne vulgaris.
        Br J Dermatol. 2013; 168: 474-485
      1. Zaenglein AL, Pathy AL, Schlosser BJ, Alikhan A, Baldwin HE, Berson DS, Bowe WP, Graber EM, Harper JC, Kang S, Keri JE, Leyden JJ, Reynolds RV, Silverberg NB, Stein Gold LF, Tollefson MM, Weiss JS, Dolan NC, Sagan AA, Stern M, Boyer KM, Bhushan R: Guidelines of care for the management of acne vulgaris. Journal of the American Academy of Dermatology 2016, 74:945-73.e33.

        • Lee YH
        • Liu G
        • Thiboutot DM
        • Leslie DL
        • Kirby JS
        A retrospective analysis of the duration of oral antibiotic therapy for the treatment of acne among adolescents: investigating practice gaps and potential cost-savings.
        Journal of the American Academy of Dermatology. 2014; 71: 70-76
        • Nagler AR
        • Milam EC
        • Orlow SJ
        The use of oral antibiotics before isotretinoin therapy in patients with acne.
        Journal of the American Academy of Dermatology. 2016; 74: 273-279
        • Del Rosso JQ
        • Webster GF
        • Rosen T
        • Thiboutot D
        • Leyden JJ
        • Gallo R
        • Walker C
        • Zhanel G
        • Eichenfield L
        Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society: Part 1: Antibiotic Prescribing Patterns, Sources of Antibiotic Exposure, Antibiotic Consumption and Emergence of Antibiotic Resistance, Impact of Alterations in Antibiotic Prescribing, and Clinical Sequelae of Antibiotic Use.
        J Clin Aesthet Dermatol. 2016; 9: 18-24
        • Barbieri JS
        • Bhate K
        • Hartnett KP
        • Fleming-Dutra KE
        • Margolis DJ
        Trends in Oral Antibiotic Prescription in Dermatology, 2008 to 2016.
        JAMA Dermatol. 2019; 155: 290-297
        • Warner AJ
        • Hathaway-Schrader JD
        • Lubker R
        • Davies C
        • Novince CM
        Tetracyclines and bone: Unclear actions with potentially lasting effects.
        Bone. 2022; 159116377
        • Eichenfield DZ
        • Sprague J
        • Eichenfield LF
        Management of Acne Vulgaris: A Review.
        Jama. 2021; 326: 2055-2067
      2. Graber EM: Acne vulgaris: Overview of management. UpToDate. Waltham, MA: UpToDate Inc, 2022.

        • Patel DJ
        • Bhatia N
        Oral Antibiotics for Acne.
        Am J Clin Dermatol. 2021; 22: 193-204
        • de Aguiar Vallim TQ
        • Tarling EJ
        • Edwards PA
        Pleiotropic roles of bile acids in metabolism.
        Cell Metab. 2013; 17: 657-669
        • Chiang JY
        Bile acid metabolism and signaling.
        Compr Physiol. 2013; 3: 1191-1212
        • Fiorucci S
        • Distrutti E
        Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.
        Trends in molecular medicine. 2015; 21: 702-714
        • Wahlstrom A
        • Sayin SI
        • Marschall HU
        • Backhed F
        Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism.
        Cell Metab. 2016; 24: 41-50
        • Gadaleta RM
        • Moschetta A
        Metabolic Messengers: fibroblast growth factor 15/19.
        Nature Metabolism. 2019; 1: 588-594
        • Guthrie G
        • Vonderohe C
        • Burrin D
        Fibroblast growth factor 15/19 expression, regulation, and function: An overview.
        Mol Cell Endocrinol. 2022; 548111617
        • Somm E
        • Jornayvaz FR
        Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives.
        Endocr Rev. 2018; 39: 960-989
        • Chiang JYL
        • Ferrell JM
        Bile Acids as Metabolic Regulators and Nutrient Sensors.
        Annu Rev Nutr. 2019; 39: 175-200
        • Gómez-Ambrosi J
        • Gallego-Escuredo JM
        • Catalán V
        • Rodríguez A
        • Domingo P
        • Moncada R
        • Valentí V
        • Salvador J
        • Giralt M
        • Villarroya F
        • Frühbeck G
        FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss.
        Clin Nutr. 2017; 36: 861-868
        • Gallego-Escuredo JM
        • Gómez-Ambrosi J
        • Catalan V
        • Domingo P
        • Giralt M
        • Frühbeck G
        • Villarroya F
        Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients.
        International Journal of Obesity. 2015; 39: 121-129
        • Pathak P
        • Liu H
        • Boehme S
        • Xie C
        • Krausz KW
        • Gonzalez F
        • Chiang JYL
        Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism.
        J Biol Chem. 2017; 292: 11055-11069
        • Fang S
        • Suh JM
        • Reilly SM
        • Yu E
        • Osborn O
        • Lackey D
        • Yoshihara E
        • Perino A
        • Jacinto S
        • Lukasheva Y
        • Atkins AR
        • Khvat A
        • Schnabl B
        • Yu RT
        • Brenner DA
        • Coulter S
        • Liddle C
        • Schoonjans K
        • Olefsky JM
        • Saltiel AR
        • Downes M
        • Evans RM
        Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance.
        Nat Med. 2015; 21: 159-165
        • Morón-Ros S
        • Uriarte I
        • Berasain C
        • Avila MA
        • Sabater-Masdeu M
        • Moreno-Navarrete JM
        • Fernández-Real JM
        • Giralt M
        • Villarroya F
        • Gavaldà-Navarro A
        FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations.
        Mol Metab. 2021; 43101113
        • Bozadjieva-Kramer N
        • Shin JH
        • Shao Y
        • Gutierrez-Aguilar R
        • Li Z
        • Heppner KM
        • Chiang S
        • Vargo SG
        • Granger K
        • Sandoval DA
        • MacDougald OA
        • Seeley RJ
        Intestinal-derived FGF15 protects against deleterious effects of vertical sleeve gastrectomy in mice.
        Nature Communications. 2021; 12: 4768
      3. Council NR: Guide for the Care and Use of Laboratory Animals: Eighth Edition. Washington, DC: The National Academies Press, 2011.

        • Bachmanov AA
        • Reed DR
        • Beauchamp GK
        • Tordoff MG
        Food intake, water intake, and drinking spout side preference of 28 mouse strains.
        Behav Genet. 2002; 32: 435-443
        • Nair AB
        • Jacob S
        A simple practice guide for dose conversion between animals and human.
        J Basic Clin Pharm. 2016; 7: 27-31
        • Tirelle P
        • Breton J
        • Riou G
        • Déchelotte P
        • Coëffier M
        • Ribet D
        Comparison of different modes of antibiotic delivery on gut microbiota depletion efficiency and body composition in mouse.
        BMC microbiology. 2020; 20: 340
        • Kelly SA
        • Nzakizwanayo J
        • Rodgers AM
        • Zhao L
        • Weiser R
        • Tekko IA
        • McCarthy HO
        • Ingram RJ
        • Jones BV
        • Donnelly RF
        • Gilmore BF
        Antibiotic Therapy and the Gut Microbiome: Investigating the Effect of Delivery Route on Gut Pathogens.
        ACS infectious diseases. 2021; 7: 1283-1296
        • Percie du Sert N
        • Ahluwalia A
        • Alam S
        • Avey MT
        • Baker M
        • Browne WJ
        • Clark A
        • Cuthill IC
        • Dirnagl U
        • Emerson M
        • Garner P
        • Holgate ST
        • Howells DW
        • Hurst V
        • Karp NA
        • Lazic SE
        • Lidster K
        • MacCallum CJ
        • Macleod M
        • Pearl EJ
        • Petersen OH
        • Rawle F
        • Reynolds P
        • Rooney K
        • Sena ES
        • Silberberg SD
        • Steckler T
        • Würbel H
        Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0.
        PLOS Biology. 2020; 18e3000411
        • Callahan B
        • Proctor D
        • Relman D
        • Fukuyama J
        • Holmes S
        REPRODUCIBLE RESEARCH WORKFLOW IN R FOR THE ANALYSIS OF PERSONALIZED HUMAN MICROBIOME DATA.
        Pac Symp Biocomput. 2016; 21: 183-194
        • Callahan BJ
        • McMurdie PJ
        • Rosen MJ
        • Han AW
        • Johnson AJA
        • Holmes SP
        DADA2: High-resolution sample inference from Illumina amplicon data.
        Nature Methods. 2016; 13: 581-583
        • Holm S
        A Simple Sequentially Rejective Multiple Test Procedure.
        Scandinavian Journal of Statistics. 1979; 6: 65-70
        • Anderson MJ
        A new method for non-parametric multivariate analysis of variance.
        Austral Ecology. 2001; 26: 32-46
      4. Kulkarni MM: Digital multiplexed gene expression analysis using the NanoString nCounter system. Curr Protoc Mol Biol 2011, Chapter 25:Unit25B.10.

        • Geiss GK
        • Bumgarner RE
        • Birditt B
        • Dahl T
        • Dowidar N
        • Dunaway DL
        • Fell HP
        • Ferree S
        • George RD
        • Grogan T
        • James JJ
        • Maysuria M
        • Mitton JD
        • Oliveri P
        • Osborn JL
        • Peng T
        • Ratcliffe AL
        • Webster PJ
        • Davidson EH
        • Hood L
        • Dimitrov K
        Direct multiplexed measurement of gene expression with color-coded probe pairs.
        Nature Biotechnology. 2008; 26: 317-325
        • Hathaway-Schrader JD
        • Aartun JD
        • Poulides NA
        • Kuhn MB
        • McCormick BE
        • Chew ME
        • Huang E
        • Darveau RP
        • Westwater C
        • Novince CM
        Commensal oral microbiota induces osteoimmunomodulatory effects separate from systemic microbiome in mice.
        JCI Insight. 2022; 7
        • Hathaway-Schrader JD
        • Steinkamp HM
        • Chavez MB
        • Poulides NA
        • Kirkpatrick JE
        • Chew ME
        • Huang E
        • Alekseyenko AV
        • Aguirre JI
        • Novince CM
        Antibiotic Perturbation of Gut Microbiota Dysregulates Osteoimmune Cross Talk in Postpubertal Skeletal Development.
        Am J Pathol. 2019; 189: 370-390
        • Hathaway-Schrader JD
        • Poulides NA
        • Carson MD
        • Kirkpatrick JE
        • Warner AJ
        • Swanson BA
        • Taylor EV
        • Chew ME
        • Reddy SV
        • Liu B
        • Westwater C
        • Novince CM
        Specific Commensal Bacterium Critically Regulates Gut Microbiota Osteoimmunomodulatory Actions During Normal Postpubertal Skeletal Growth and Maturation.
        JBMR plus. 2020; 4e10338
        • Novince CM
        • Whittow CR
        • Aartun JD
        • Hathaway JD
        • Poulides N
        • Chavez MB
        • Steinkamp HM
        • Kirkwood KA
        • Huang E
        • Westwater C
        • Kirkwood KL
        Commensal Gut Microbiota Immunomodulatory Actions in Bone Marrow and Liver have Catabolic Effects on Skeletal Homeostasis in Health.
        Sci Rep. 2017; 7: 5747
        • Schmittgen TD
        • Livak KJ
        Analyzing real-time PCR data by the comparative C(T) method.
        Nat Protoc. 2008; 3: 1101-1108
        • Scheller EL
        • Troiano N
        • Vanhoutan JN
        • Bouxsein MA
        • Fretz JA
        • Xi Y
        • Nelson T
        • Katz G
        • Berry R
        • Church CD
        • Doucette CR
        • Rodeheffer MS
        • Macdougald OA
        • Rosen CJ
        • Horowitz MC
        Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo.
        Methods Enzymol. 2014; 537: 123-139
        • Campbell GM
        • Sophocleous A
        Quantitative analysis of bone and soft tissue by micro-computed tomography: applications to ex vivo and in vivo studies.
        Bonekey Rep. 2014; 3: 564
        • Judex S
        • Luu YK
        • Ozcivici E
        • Adler B
        • Lublinsky S
        • Rubin CT
        Quantification of adiposity in small rodents using micro-CT.
        Methods. 2010; 50: 14-19
        • Luu YK
        • Lublinsky S
        • Ozcivici E
        • Capilla E
        • Pessin JE
        • Rubin CT
        • Judex S
        In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model.
        Med Eng Phys. 2009; 31: 34-41
        • Nguyen F
        • Starosta AL
        • Arenz S
        • Sohmen D
        • Dönhöfer A
        • Wilson DN
        Tetracycline antibiotics and resistance mechanisms.
        Biol Chem. 2014; 395: 559-575
        • Grossman TH
        Tetracycline Antibiotics and Resistance.
        Cold Spring Harb Perspect Med. 2016; 6: a025387
        • Nelson ML
        • Levy SB
        The history of the tetracyclines.
        Ann N Y Acad Sci. 2011; 1241: 17-32
        • Chopra I
        • Roberts M
        Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance.
        Microbiol Mol Biol Rev. 2001; 65 (second page, table of contents): 232-260
        • Chukwudi CU
        rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines.
        Antimicrob Agents Chemother. 2016; 60: 4433-4441
        • Agwuh KN
        • MacGowan A
        Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines.
        J Antimicrob Chemother. 2006; 58: 256-265
        • Saivin S
        • Houin G
        Clinical pharmacokinetics of doxycycline and minocycline.
        Clin Pharmacokinet. 1988; 15: 355-366
        • Dutta S
        • Sengupta P
        Men and mice: Relating their ages.
        Life Sci. 2016; 152: 244-248
      5. Flurkey K, M. Currer J, Harrison DE: Chapter 20 - Mouse Models in Aging Research. The Mouse in Biomedical Research (Second Edition). Edited by Fox JG, Davisson MT, Quimby FW, Barthold SW, Newcomer CE, Smith AL. Burlington: Academic Press, 2007. pp. 637-672.

        • Nelson JF
        • Karelus K
        • Felicio LS
        • Johnson TE
        Genetic influences on the timing of puberty in mice.
        Biology of reproduction. 1990; 42: 649-655
        • Kuno T
        • Hirayama-Kurogi M
        • Ito S
        • Ohtsuki S
        Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels.
        Scientific Reports. 2018; 8: 1253
        • Oh HYP
        • Ellero-Simatos S
        • Manickam R
        • Tan NS
        • Guillou H
        • Wahli W
        Depletion of Gram-Positive Bacteria Impacts Hepatic Biological Functions During the Light Phase.
        Int J Mol Sci. 2019; 20
        • Chen CH
        • Tsai PS
        • Huang CJ
        Minocycline ameliorates lung and liver dysfunction in a rodent model of hemorrhagic shock/resuscitation plus abdominal compartment syndrome.
        J Surg Res. 2013; 180: 301-309
        • Li Y
        • Li T
        • Qi H
        • Yuan F
        Minocycline protects against hepatic ischemia/reperfusion injury in a rat model.
        Biomed Rep. 2015; 3: 19-24
        • Schmidt EKA
        • Raposo PJF
        • Torres-Espin A
        • Fenrich KK
        • Fouad K
        Beyond the lesion site: minocycline augments inflammation and anxiety-like behavior following SCI in rats through action on the gut microbiota.
        J Neuroinflammation. 2021; 18: 144
        • Garrido-Mesa J
        • Rodríguez-Nogales A
        • Algieri F
        • Vezza T
        • Hidalgo-Garcia L
        • Garrido-Barros M
        • Utrilla MP
        • Garcia F
        • Chueca N
        • Rodriguez-Cabezas ME
        • Garrido-Mesa N
        • Gálvez J
        Immunomodulatory tetracyclines shape the intestinal inflammatory response inducing mucosal healing and resolution.
        Br J Pharmacol. 2018; 175: 4353-4370
        • Garrido-Mesa N
        • Zarzuelo A
        • Gálvez J
        Minocycline: far beyond an antibiotic.
        Br J Pharmacol. 2013; 169: 337-352
        • Itabe H
        • Yamaguchi T
        • Nimura S
        • Sasabe N
        Perilipins: a diversity of intracellular lipid droplet proteins.
        Lipids in Health and Disease. 2017; 16: 83
        • Brasaemle DL
        Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis.
        J Lipid Res. 2007; 48: 2547-2559
        • Kuribayashi H
        • Miyata M
        • Yamakawa H
        • Yoshinari K
        • Yamazoe Y
        Enterobacteria-mediated deconjugation of taurocholic acid enhances ileal farnesoid X receptor signaling.
        Eur J Pharmacol. 2012; 697: 132-138
        • Sayin SI
        • Wahlstrom A
        • Felin J
        • Jantti S
        • Marschall HU
        • Bamberg K
        • Angelin B
        • Hyotylainen T
        • Oresic M
        • Backhed F
        Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist.
        Cell Metab. 2013; 17: 225-235
        • Miyata M
        • Takamatsu Y
        • Kuribayashi H
        • Yamazoe Y
        Administration of ampicillin elevates hepatic primary bile acid synthesis through suppression of ileal fibroblast growth factor 15 expression.
        J Pharmacol Exp Ther. 2009; 331: 1079-1085
      6. Carson MD, Warner AJ, Hathaway-Schrader JD, Geiser VL, Kim JD, Gerasco JE, Hill WD, Lemasters JJ, Alekseyenko AV, Wu Y, Yao H, Aguirre JI, Westwater C, Novince CM: Minocycline-induced disruption of the intestinal FXR-FGF15 axis impairs osteogenesis in mice. JCI Insight 2022.

        • Leveille GA
        • Chakrabarty K
        Diurnal variations in tissue glycogen and liver weight of meal-fed rats.
        J Nutr. 1967; 93: 546-554
        • den Otter W
        • van Boxtel AB
        Relation between the glycogen content of the liver and liver weight, and its meaning for enzymology.
        Experientia. 1971; 27: 1271-1272
        • Scheller EL
        • Burr AA
        • MacDougald OA
        • Cawthorn WP
        Inside out: Bone marrow adipose tissue as a source of circulating adiponectin.
        Adipocyte. 2016; 5: 251-269
        • Cawthorn WP
        • Scheller EL
        • Learman BS
        • Parlee SD
        • Simon BR
        • Mori H
        • Ning X
        • Bree AJ
        • Schell B
        • Broome DT
        • Soliman SS
        • DelProposto JL
        • Lumeng CN
        • Mitra A
        • Pandit SV
        • Gallagher KA
        • Miller JD
        • Krishnan V
        • Hui SK
        • Bredella MA
        • Fazeli PK
        • Klibanski A
        • Horowitz MC
        • Rosen CJ
        • MacDougald OA
        Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction.
        Cell Metab. 2014; 20: 368-375
        • Devlin MJ
        • Rosen CJ
        The bone-fat interface: basic and clinical implications of marrow adiposity.
        Lancet Diabetes Endocrinol. 2015; 3: 141-147
        • Paccou J
        • Hardouin P
        • Cotten A
        • Penel G
        • Cortet B
        The Role of Bone Marrow Fat in Skeletal Health: Usefulness and Perspectives for Clinicians.
        J Clin Endocrinol Metab. 2015; 100: 3613-3621
        • Després J-P
        • Lemieux I
        • Bergeron J
        • Pibarot P
        • Mathieu P
        • Larose E
        • Rodés-Cabau J
        • Bertrand OF
        • Poirier P
        Abdominal Obesity and the Metabolic Syndrome: Contribution to Global Cardiometabolic Risk.
        Arteriosclerosis, Thrombosis, and Vascular Biology. 2008; 28: 1039-1049
        • Contopoulos-Ioannidis DG
        • Ley C
        • Wang W
        • Ma T
        • Olson C
        • Shi X
        • Luft HS
        • Hastie T
        • Parsonnet J
        Effect of long-term antibiotic use on weight in adolescents with acne.
        J Antimicrob Chemother. 2016; 71: 1098-1105
        • Lozupone CA
        • Stombaugh JI
        • Gordon JI
        • Jansson JK
        • Knight R
        Diversity, stability and resilience of the human gut microbiota.
        Nature. 2012; 489: 220-230
        • Isaacs-Ten A
        • Echeandia M
        • Moreno-Gonzalez M
        • Brion A
        • Goldson A
        • Philo M
        • Patterson AM
        • Parker A
        • Galduroz M
        • Baker D
        • Rushbrook SM
        • Hildebrand F
        • Beraza N
        Intestinal Microbiome-Macrophage Crosstalk Contributes to Cholestatic Liver Disease by Promoting Intestinal Permeability in Mice.
        Hepatology. 2020; 72: 2090-2108
        • Vacca M
        • Celano G
        • Calabrese FM
        • Portincasa P
        • Gobbetti M
        • De Angelis M
        The Controversial Role of Human Gut Lachnospiraceae.
        Microorganisms. 2020; 8
        • Ridlon JM
        • Alves JM
        • Hylemon PB
        • Bajaj JS
        Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship.
        Gut microbes. 2013; 4: 382-387
        • Just S
        • Mondot S
        • Ecker J
        • Wegner K
        • Rath E
        • Gau L
        • Streidl T
        • Hery-Arnaud G
        • Schmidt S
        • Lesker TR
        • Bieth V
        • Dunkel A
        • Strowig T
        • Hofmann T
        • Haller D
        • Liebisch G
        • Gérard P
        • Rohn S
        • Lepage P
        • Clavel T
        The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism.
        Microbiome. 2018; 6: 134
        • Sanders ME
        • Merenstein DJ
        • Reid G
        • Gibson GR
        • Rastall RA
        Probiotics and prebiotics in intestinal health and disease: from biology to the clinic.
        Nature Reviews Gastroenterology & Hepatology. 2019; 16: 605-616
        • Bogatyrev SR
        • Rolando JC
        • Ismagilov RF
        Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine.
        Microbiome. 2020; 8: 19
        • Ebino KY
        Studies on coprophagy in experimental animals.
        Jikken Dobutsu. 1993; 42: 1-9
        • Ericsson AC
        • Franklin CL
        The gut microbiome of laboratory mice: considerations and best practices for translational research.
        Mammalian Genome. 2021; 32: 239-250
        • Kenagy GJ
        • Hoyt DF
        Reingestion of feces in rodents and its daily rhythmicity.
        Oecologia. 1979; 44: 403-409
        • Soave O
        • Brand CD
        Coprophagy in animals: a review.
        Cornell Vet. 1991; 81: 357-364
        • Bourgin M
        • Kriaa A
        • Mkaouar H
        • Mariaule V
        • Jablaoui A
        • Maguin E
        • Rhimi M
        Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health.
        Microorganisms. 2021; 9
        • Song Z
        • Cai Y
        • Lao X
        • Wang X
        • Lin X
        • Cui Y
        • Kalavagunta PK
        • Liao J
        • Jin L
        • Shang J
        • Li J
        Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome.
        Microbiome. 2019; 7: 9
        • Ridlon JM
        • Kang DJ
        • Hylemon PB
        Bile salt biotransformations by human intestinal bacteria.
        J Lipid Res. 2006; 47: 241-259
        • Ridlon JM
        • Kang DJ
        • Hylemon PB
        Isolation and characterization of a bile acid inducible 7alpha-dehydroxylating operon in Clostridium hylemonae TN271.
        Anaerobe. 2010; 16: 137-146
        • Merk D
        • Sreeramulu S
        • Kudlinzki D
        • Saxena K
        • Linhard V
        • Gande SL
        • Hiller F
        • Lamers C
        • Nilsson E
        • Aagaard A
        • Wissler L
        • Dekker N
        • Bamberg K
        • Schubert-Zsilavecz M
        • Schwalbe H
        Molecular tuning of farnesoid X receptor partial agonism.
        Nature communications. 2019; 10: 2915
        • Modica S
        • Gadaleta RM
        • Moschetta A
        Deciphering the nuclear bile acid receptor FXR paradigm.
        Nuclear receptor signaling. 2010; 8e005
        • Monte MJ
        • Marin JJ
        • Antelo A
        • Vazquez-Tato J
        Bile acids: chemistry, physiology, and pathophysiology.
        World J Gastroenterol. 2009; 15: 804-816
        • Greimel T
        • Jahnel J
        • Pohl S
        • Strini T
        • Tischitz M
        • Meier-Allard N
        • Holasek S
        • Meinel K
        • Aguiriano-Moser V
        • Zobel J
        • Haidl H
        • Gallistl S
        • Panzitt K
        • Wagner M
        • Schlagenhauf A
        Bile acid-induced tissue factor activity in hepatocytes correlates with activation of farnesoid X receptor.
        Lab Invest. 2021; 101: 1394-1402
        • Sun L
        • Xie C
        • Wang G
        • Wu Y
        • Wu Q
        • Wang X
        • Liu J
        • Deng Y
        • Xia J
        • Chen B
        • Zhang S
        • Yun C
        • Lian G
        • Zhang X
        • Zhang H
        • Bisson WH
        • Shi J
        • Gao X
        • Ge P
        • Liu C
        • Krausz KW
        • Nichols RG
        • Cai J
        • Rimal B
        • Patterson AD
        • Wang X
        • Gonzalez FJ
        • Jiang C
        Gut microbiota and intestinal FXR mediate the clinical benefits of metformin.
        Nat Med. 2018; 24: 1919-1929
        • Li F
        • Jiang C
        • Krausz KW
        • Li Y
        • Albert I
        • Hao H
        • Fabre KM
        • Mitchell JB
        • Patterson AD
        • Gonzalez FJ
        Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity.
        Nature communications. 2013; 4: 2384
        • Tomlinson E
        • Fu L
        • John L
        • Hultgren B
        • Huang X
        • Renz M
        • Stephan JP
        • Tsai SP
        • Powell-Braxton L
        • French D
        • Stewart TA
        Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity.
        Endocrinology. 2002; 143: 1741-1747
        • Huang X
        • Yang C
        • Luo Y
        • Jin C
        • Wang F
        • McKeehan WL
        FGFR4 prevents hyperlipidemia and insulin resistance but underlies high-fat diet induced fatty liver.
        Diabetes. 2007; 56: 2501-2510
        • Mráz M
        • Lacinová Z
        • Kaválková P
        • Haluzíková D
        • Trachta P
        • Drápalová J
        • Hanušová V
        • Haluzík M
        Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-α agonist treatment.
        Physiol Res. 2011; 60: 627-636
        • Gallego-Escuredo JM
        • Gómez-Ambrosi J
        • Catalan V
        • Domingo P
        • Giralt M
        • Frühbeck G
        • Villarroya F
        Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients.
        Int J Obes (Lond). 2015; 39: 121-129
        • Renner O
        • Harsch S
        • Matysik S
        • Lütjohann D
        • Schmitz G
        • Stange EF
        Upregulation of hepatic bile acid synthesis via fibroblast growth factor 19 is defective in gallstone disease but functional in overweight individuals.
        United European Gastroenterol J. 2014; 2: 216-225
        • Hu X
        • Xiong Q
        • Xu Y
        • Zhang X
        • Pan X
        • Ma X
        • Bao Y
        • Jia W
        Association of serum fibroblast growth factor 19 levels with visceral fat accumulation is independent of glucose tolerance status.
        Nutr Metab Cardiovasc Dis. 2018; 28: 119-125
        • Wojcik M
        • Janus D
        • Dolezal-Oltarzewska K
        • Kalicka-Kasperczyk A
        • Poplawska K
        • Drozdz D
        • Sztefko K
        • Starzyk JB
        A decrease in fasting FGF19 levels is associated with the development of non-alcoholic fatty liver disease in obese adolescents.
        J Pediatr Endocrinol Metab. 2012; 25: 1089-1093
        • Pathak P
        • Xie C
        • Nichols RG
        • Ferrell JM
        • Boehme S
        • Krausz KW
        • Patterson AD
        • Gonzalez FJ
        • Chiang JYL
        Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism.
        Hepatology. 2018; 68: 1574-1588
        • Cipriani S
        • Mencarelli A
        • Palladino G
        • Fiorucci S
        FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats.
        J Lipid Res. 2010; 51: 771-784
        • Adorini L
        • Pruzanski M
        • Shapiro D
        Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis.
        Drug Discov Today. 2012; 17: 988-997
      7. Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, Adorini L, Sciacca CI, Clopton P, Castelloe E, Dillon P, Pruzanski M, Shapiro D: Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013, 145:574-82.e1.

        • Bozadjieva N
        • Heppner KM
        • Seeley RJ
        Targeting FXR and FGF19 to Treat Metabolic Diseases-Lessons Learned From Bariatric Surgery.
        Diabetes. 2018; 67: 1720-1728
        • Antonellis PJ
        • Droz BA
        • Cosgrove R
        • O'Farrell LS
        • Coskun T
        • Perfield 2nd, JW
        • Bauer S
        • Wade M
        • Chouinard TE
        • Brozinick JT
        • Adams AC
        • Samms RJ
        The anti-obesity effect of FGF19 does not require UCP1-dependent thermogenesis.
        Mol Metab. 2019; 30: 131-139
        • Fu L
        • John LM
        • Adams SH
        • Yu XX
        • Tomlinson E
        • Renz M
        • Williams PM
        • Soriano R
        • Corpuz R
        • Moffat B
        • Vandlen R
        • Simmons L
        • Foster J
        • Stephan JP
        • Tsai SP
        • Stewart TA
        Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes.
        Endocrinology. 2004; 145: 2594-2603
        • Bhatnagar S
        • Damron HA
        • Hillgartner FB
        Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis.
        J Biol Chem. 2009; 284: 10023-10033
        • Harrison SA
        • Rinella ME
        • Abdelmalek MF
        • Trotter JF
        • Paredes AH
        • Arnold HL
        • Kugelmas M
        • Bashir MR
        • Jaros MJ
        • Ling L
        • Rossi SJ
        • DePaoli AM
        • Loomba R
        NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial.
        Lancet. 2018; 391: 1174-1185
        • Harrison SA
        • Rossi SJ
        • Paredes AH
        • Trotter JF
        • Bashir MR
        • Guy CD
        • Banerjee R
        • Jaros MJ
        • Owers S
        • Baxter BA
        • Ling L
        • DePaoli AM
        NGM282 Improves Liver Fibrosis and Histology in 12 Weeks in Patients With Nonalcoholic Steatohepatitis.
        Hepatology. 2020; 71: 1198-1212
        • Masoodi M
        • Gastaldelli A
        • Hyötyläinen T
        • Arretxe E
        • Alonso C
        • Gaggini M
        • Brosnan J
        • Anstee QM
        • Millet O
        • Ortiz P
        • Mato JM
        • Dufour JF
        • Orešič M
        Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests.
        Nat Rev Gastroenterol Hepatol. 2021; 18: 835-856
        • Leung C
        • Rivera L
        • Furness JB
        • Angus PW
        The role of the gut microbiota in NAFLD.
        Nat Rev Gastroenterol Hepatol. 2016; 13: 412-425
        • Samuel VT
        • Shulman GI
        Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases.
        Cell Metab. 2018; 27: 22-41
        • Lee YB
        • Byun EJ
        • Kim HS
        Potential Role of the Microbiome in Acne: A Comprehensive Review.
        J Clin Med. 2019; 8
        • Becker E
        • Schmidt TSB
        • Bengs S
        • Poveda L
        • Opitz L
        • Atrott K
        • Stanzel C
        • Biedermann L
        • Rehman A
        • Jonas D
        • von Mering C
        • Rogler G
        • Frey-Wagner I
        Effects of oral antibiotics and isotretinoin on the murine gut microbiota.
        Int J Antimicrob Agents. 2017; 50: 342-351
        • Ghannoum MA
        • Long L
        • Bunick CG
        • Del Rosso JQ
        • Gamal A
        • Tyring SK
        • McCormick TS
        • Grada A
        Sarecycline Demonstrated Reduced Activity Compared to Minocycline against Microbial Species Representing Human Gastrointestinal Microbiota.
        Antibiotics (Basel). 2022; : 11
        • Moura IB
        • Grada A
        • Spittal W
        • Clark E
        • Ewin D
        • Altringham J
        • Fumero E
        • Wilcox MH
        • Buckley AM
        Profiling the Effects of Systemic Antibiotics for Acne, Including the Narrow-Spectrum Antibiotic Sarecycline, on the Human Gut Microbiota.
        Front Microbiol. 2022; 13901911
        • Elvers KT
        • Wilson VJ
        • Hammond A
        • Duncan L
        • Huntley AL
        • Hay AD
        • van der Werf ET
        Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review.
        BMJ Open. 2020; 10e035677