Advertisement
Regular Article|Articles in Press

AMD3100-Mediated CXCR4 Inhibition Impairs Development of Primary Lymphoma of the Central Nervous System

      A hallmark of primary lymphoma of the central nervous system (CNS; PCNSL) is the strong CXCR4 expression of the tumor cells, the function of which is still unknown. In vitro treatment of BAL17CNS lymphoma cells by AMD3100, which inhibits CXCR4-CXCL12 interactions, resulted in the significantly differential expression of 273 genes encoding proteins involved in cell motility, cell-cell signaling and interaction, hematological system development and function, and immunologic disease. Among the genes down-regulated was the one encoding CD200, a regulator of CNS immunologic activity. These data directly translated into the in vivo situation; BAL17CNS CD200 expression was down-regulated by 89% (3% versus 28% CD200+ lymphoma cells) in AMD3100-treated versus untreated mice with BAL17CNS-induced PCNSL. Reduced lymphoma cell CD200 expression may contribute to the markedly increased microglial activation in AMD3100-treated mice. AMD3100 also maintained the structural integrity of blood-brain barrier tight junctions and the outer basal lamina of cerebral blood vessels. Subsequently, lymphoma cell invasion of the brain parenchyma was impaired, and maximal parenchymal tumor size was significantly reduced by 82% in the induction phase. Thus, AMD3100 qualified as a potentially attractive candidate to be included into the therapeutic concept of PCNSL. Beyond therapy, CXCR4-induced suppression of microglial activity is of general neuroimmunologic interest and identifies CD200 expressed by the lymphoma cells as a novel mechanism of immune escape in PCNSL.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Deckert M.
        • Batchelor T.
        • Ferry J.A.
        • Hoang-Xuan K.
        • Nagane M.
        • Paulus W.
        • Weller E.
        Cree I.A. Lokuhetty D. Peferoen L.A.N. White V.A. Lymphomas. WHO Classification of Tumours Editorial Board Central Nervous System Tumours. IRAC, Lyon, France2021: 351-369
        • Brunn A.
        • Montesinos-Rongen M.
        • Strack A.
        • Reifenberger G.
        • Mawrin C.
        • Schaller C.
        • Deckert M.
        Expression pattern and cellular sources of chemokines in primary central nervous system lymphoma.
        Acta Neuropathol. 2007; 114: 271-276
        • Deckert M.
        • Montesinos-Rongen M.
        • Brunn A.
        • Siebert R.
        Systems biology of primary CNS lymphoma: from genetic aberrations to modeling in mice.
        Acta Neuropathol. 2014; 127: 175-188
        • Montesinos-Rongen M.
        • Brunn A.
        • Sanchez-Ruiz M.
        • Küppers R.
        • Siebert R.
        • Deckert M.
        Impact of a faulty germinal center reaction on the pathogenesis of primary diffuse large B cell lymphoma of the central nervous system.
        Cancers (Basel). 2021; 13: 6334
        • Montesinos-Rongen M.
        • Terrao M.
        • May C.
        • Marcus K.
        • Blümcke I.
        • Hellmich M.
        • Küppers R.
        • Brunn A.
        • Deckert M.
        The process of somatic hypermutation increases polyreactivity for central nervous system antigens in primary central nervous system lymphoma.
        Haematologica. 2021; 106: 708-717
        • Radke J.
        • Ishaque N.
        • Koll R.
        • Gu Z.
        • Schumann E.
        • Sieverling L.
        • et al.
        The genomic and transcriptional landscape of primary central nervous system lymphoma.
        Nat Commun. 2022; 13: 2558
        • Vater I.
        • Montesinos-Rongen M.
        • Schlesner M.
        • Haake A.
        • Purschke F.
        • Sprute R.
        • Mettenmeyer N.
        • Nazzal I.
        • Nagel I.
        • Gutwein J.
        • Richter J.
        • Buchhalter I.
        • Russell R.B.
        • Wiestler O.D.
        • Eils R.
        • Deckert M.
        • Siebert R.
        The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing.
        Leukemia. 2015; 29: 677-685
        • Severson E.A.
        • Haberberger J.
        • Hemmerich A.
        • Huang R.S.P.
        • Edgerly C.
        • Schiavone K.
        • Najafian A.
        • Hiemenz M.
        • Lechpammer M.
        • Vergilio J.A.
        • Lesser G.
        • Strowd R.
        • Elvin J.
        • Ross J.S.
        • Hegde P.
        • Alexander B.
        • Singer S.
        • Ramkissoon S.
        Genomic profiling reveals differences in primary central nervous system lymphoma and large B-cell lymphoma, with subtyping suggesting sensitivity to BTK inhibition.
        Oncologist. 2023; 28: e26-e35
        • Bal E.
        • Kumar R.
        • Hadigol M.
        • Holmes A.B.
        • Hilton L.K.
        • Loh J.W.
        • Dreval K.
        • Wong J.C.H.
        • Vlasevska S.
        • Corinaldesi C.
        • Soni R.K.
        • Basso K.
        • Morin R.D.
        • Khiabanian H.
        • Pasqualucci L.
        • Dalla-Favera R.
        Super-enhancer hypermutation alters oncogene expression in B cell lymphoma.
        Nature. 2022; 607: 808-815
        • Kohler R.E.
        • Comerford I.
        • Townley S.
        • Haylock-Jacobs S.
        • Clark-Lewis I.
        • McColl S.R.
        Antagonism of the chemokine receptors CXCR3 and CXCR4 reduces the pathology of experimental autoimmune encephalomyelitis.
        Brain Pathol. 2008; 18: 504-516
        • Barbieri F.
        • Bajetto A.
        • Thellung S.
        • Würth R.
        • Florio T.
        Drug design strategies focusing on the CXCR4/CXCR7/CXCL12 pathway in leukemia and lymphoma.
        Expert Opin Drug Discov. 2016; 11: 1093-1109
        • Moreno M.J.
        • Gallardo A.
        • Novelli S.
        • Mozos A.
        • Arago M.
        • Pavon M.A.
        • Cespedes M.V.
        • Pallares V.
        • Falgas A.
        • Alcoceba M.
        • Blanco O.
        • Gonzalez-Diaz M.
        • Sierra J.
        • Mangues R.
        • Casanova I.
        CXCR7 expression in diffuse large B-cell lymphoma identifies a subgroup of CXCR4+ patients with good prognosis.
        PLoS One. 2018; 13e0198789
        • Pansy K.
        • Feichtinger J.
        • Ehall B.
        • Uhl B.
        • Sedej M.
        • Roula D.
        • Pursche B.
        • Wolf A.
        • Zoidl M.
        • Steinbauer E.
        • Gruber V.
        • Greinix H.T.
        • Prochazka K.T.
        • Thallinger G.G.
        • Heinemann A.
        • Beham-Schmid C.
        • Neumeister P.
        • Wrodnigg T.M.
        • Fechter K.
        • Deutsch A.J.
        The CXCR4-CXCL12-axis is of prognostic relevance in DLBCL and its antagonists exert pro-apoptotic effects in vitro.
        Int J Mol Sci. 2019; 20: 4740
        • Peled A.
        • Klein S.
        • Beider K.
        • Burger J.A.
        • Abraham M.
        Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies.
        Cytokine. 2018; 109: 11-16
        • Teicher B.A.
        • Fricker S.P.
        CXCL12 (SDF-1)/CXCR4 pathway in cancer.
        Clin Cancer Res. 2010; 16: 2927-2931
        • Moreno M.J.
        • Bosch R.
        • Dieguez-Gonzalez R.
        • Novelli S.
        • Mozos A.
        • Gallardo A.
        • Pavon M.A.
        • Cespedes M.V.
        • Granena A.
        • Alcoceba M.
        • Blanco O.
        • Gonzalez-Diaz M.
        • Sierra J.
        • Mangues R.
        • Casanova I.
        CXCR4 expression enhances diffuse large B cell lymphoma dissemination and decreases patient survival.
        J Pathol. 2015; 235: 445-455
        • Würth R.
        • Bajetto A.
        • Harrison J.K.
        • Barbieri F.
        • Florio T.
        CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment.
        Front Cell Neurosci. 2014; 8: 144
        • De Clercq E.
        Recent advances on the use of the CXCR4 antagonist plerixafor (AMD3100, Mozobil) and potential of other CXCR4 antagonists as stem cell mobilizers.
        Pharmacol Ther. 2010; 128: 509-518
        • Brunn A.
        • Utermöhlen O.
        • Mihelcic M.
        • Sanchez-Ruiz M.
        • Carstov M.
        • Blau T.
        • Ustinova I.
        • Penfold M.
        • Montesinos-Rongen M.
        • Deckert M.
        Differential effects of CXCR4-CXCL12- and CXCR7-CXCL12-mediated immune reactions on murine P0106-125 -induced experimental autoimmune neuritis.
        Neuropathol Appl Neurobiol. 2013; 39: 772-787
        • De Clercq E.
        Mozobil(R) (Plerixafor, AMD3100), 10 years after its approval by the US food and drug administration.
        Antivir Chem Chemother. 2019; 27: 1-8
        • Adlere I.
        • Caspar B.
        • Arimont M.
        • Dekkers S.
        • Visser K.
        • Stuijt J.
        • de Graaf C.
        • Stocks M.
        • Kellam B.
        • Briddon S.
        • Wijtmans M.
        • de Esch I.
        • Hill S.
        • Leurs R.
        Modulators of CXCR4 and CXCR7/ACKR3 function.
        Mol Pharmacol. 2019; 96: 737-752
        • Montesinos-Rongen M.
        • Sanchez-Ruiz M.
        • Brunn A.
        • Hong K.
        • Bens S.
        • Perales S.R.
        • Cigudosa J.C.
        • Siebert R.
        • Deckert M.
        Mechanisms of intracerebral lymphoma growth delineated in a syngeneic mouse model of central nervous system lymphoma.
        J Neuropathol Exp Neurol. 2013; 72: 325-336
        • Hoek R.M.
        • Ruuls S.R.
        • Murphy C.A.
        • Wright G.J.
        • Goddard R.
        • Zurawski S.M.
        • Blom B.
        • Homola M.E.
        • Streit W.J.
        • Brown M.H.
        • Barclay A.N.
        • Sedgwick J.D.
        Down-regulation of the macrophage lineage through interaction with OX2 (CD200).
        Science. 2000; 290: 1768-1771
        • Förster R.
        • Kremmer E.
        • Schubel A.
        • Breitfeld D.
        • Kleinschmidt A.
        • Nerl C.
        • Bernhardt G.
        • Lipp M.
        Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation.
        J Immunol. 1998; 160: 1522-1531
        • Agarwal A.
        • Fleischman A.G.
        • Petersen C.L.
        • MacKenzie R.
        • Luty S.
        • Loriaux M.
        • Druker B.J.
        • Woltjer R.L.
        • Deininger M.W.
        Effects of plerixafor in combination with BCR-ABL kinase inhibition in a murine model of CML.
        Blood. 2012; 120: 2658-2668
        • Berning P.
        • Schaefer C.
        • Clemens D.
        • Korsching E.
        • Dirksen U.
        • Potratz J.
        The CXCR4 antagonist plerixafor (AMD3100) promotes proliferation of Ewing sarcoma cell lines in vitro and activates receptor tyrosine kinase signaling.
        Cell Commun Signal. 2018; 16: 21
        • McHeik S.
        • Van Eeckhout N.
        • De Poorter C.
        • Gales C.
        • Parmentier M.
        • Springael J.Y.
        Coexpression of CCR7 and CXCR4 during B cell development controls CXCR4 responsiveness and bone marrow homing.
        Front Immunol. 2019; 10: 2970
        • Okada T.
        • Ngo V.N.
        • Ekland E.H.
        • Förster R.
        • Lipp M.
        • Littman D.R.
        • Cyster J.G.
        Chemokine requirements for B cell entry to lymph nodes and Peyer's patches.
        J Exp Med. 2002; 196: 65-75
        • Montesinos-Rongen M.
        • Schmitz R.
        • Courts C.
        • Stenzel W.
        • Bechtel D.
        • Niedobitek G.
        • Blümcke I.
        • Reifenberger G.
        • von Deimling A.
        • Jungnickel B.
        • Wiestler O.D.
        • Küppers R.
        • Deckert M.
        Absence of immunoglobulin class switch in primary lymphomas of the central nervous system.
        Am J Pathol. 2005; 166: 1773-1779
        • Montesinos-Rongen M.
        • Van Roost D.
        • Schaller C.
        • Wiestler O.D.
        • Deckert M.
        Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation.
        Blood. 2004; 103: 1869-1875
        • Montesinos-Rongen M.
        • Purschke F.
        • Küppers R.
        • Deckert M.
        Immunoglobulin repertoire of primary lymphomas of the central nervous system.
        J Neuropathol Exp Neurol. 2014; 73: 1116-1125
        • Montesinos-Rongen M.
        • Purschke F.G.
        • Brunn A.
        • May C.
        • Nordhoff E.
        • Marcus K.
        • Deckert M.
        Primary central nervous system (CNS) lymphoma B cell receptors recognize CNS proteins.
        J Immunol. 2015; 195: 1312-1319
        • Montesinos-Rongen M.
        • Küppers R.
        • Schlüter D.
        • Spieker T.
        • Van Roost D.
        • Schaller C.
        • Reifenberger G.
        • Wiestler O.D.
        • Deckert-Schlüter M.
        Primary central nervous system lymphomas are derived from germinal-center B cells and show a preferential usage of the V4-34 gene segment.
        Am J Pathol. 1999; 155: 2077-2086
        • Chen J.
        • Xu-Monette Z.Y.
        • Deng L.
        • Shen Q.
        • Manyam G.C.
        • Martinez-Lopez A.
        • Zhang L.
        • Montes-Moreno S.
        • Visco C.
        • Tzankov A.
        • Yin L.
        • Dybkaer K.
        • Chiu A.
        • Orazi A.
        • Zu Y.
        • Bhagat G.
        • Richards K.L.
        • Hsi E.D.
        • Choi W.W.
        • van Krieken J.H.
        • Huh J.
        • Ponzoni M.
        • Ferreri A.J.
        • Zhao X.
        • Moller M.B.
        • Farnen J.P.
        • Winter J.N.
        • Piris M.A.
        • Pham L.
        • Young K.H.
        Dysregulated CXCR4 expression promotes lymphoma cell survival and independently predicts disease progression in germinal center B-cell-like diffuse large B-cell lymphoma.
        Oncotarget. 2015; 6: 5597-5614
        • Bartolomé R.A.
        • Peláez-Garcia A.
        • Gomez I.
        • Torres S.
        • Fernandez-Aceñero M.J.
        • Escudero-Paniagua B.
        • Imbaud J.I.
        • Casal J.I.
        An RGD motif present in cadherin 17 induces integrin activation and tumor growth.
        J Biol Chem. 2014; 289: 34801-34814
        • Won W.J.
        • Bachmann M.F.
        • Kearney J.F.
        CD36 is differentially expressed on B cell subsets during development and in responses to antigen.
        J Immunol. 2008; 180: 230-237
        • Danilova O.V.
        • Dumont L.J.
        • Levy N.B.
        • Lansigan F.
        • Kinlaw W.B.
        • Danilov A.V.
        • Kaur P.
        FASN and CD36 predict survival in rituximab-treated diffuse large B-cell lymphoma.
        J Hematop. 2013; 6: 11-18
        • Newton J.G.
        • Horan J.T.
        • Newman S.
        • Rossi M.R.
        • Ketterling R.P.
        • Park S.I.
        CD36-positive B-lymphoblasts predict poor outcome in children with B-lymphoblastic leukemia.
        Pediatr Dev Pathol. 2017; 20: 224-231
        • Alaterre E.
        • Raimbault S.
        • Goldschmidt H.
        • Bouhya S.
        • Requirand G.
        • Robert N.
        • Boireau S.
        • Seckinger A.
        • Hose D.
        • Klein B.
        • Moreaux J.
        CD24, CD27, CD36 and CD302 gene expression for outcome prediction in patients with multiple myeloma.
        Oncotarget. 2017; 8: 98931-98944
        • Wright G.J.
        • Puklavec M.J.
        • Willis A.C.
        • Hoek R.M.
        • Sedgwick J.D.
        • Brown M.H.
        • Barclay A.N.
        Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function.
        Immunity. 2000; 13: 233-242
        • Wright G.J.
        • Cherwinski H.
        • Foster-Cuevas M.
        • Brooke G.
        • Puklavec M.J.
        • Bigler M.
        • Song Y.
        • Jenmalm M.
        • Gorman D.
        • McClanahan T.
        • Liu M.R.
        • Brown M.H.
        • Sedgwick J.D.
        • Phillips J.H.
        • Barclay A.N.
        Characterization of the CD200 receptor family in mice and humans and their interactions with CD200.
        J Immunol. 2003; 171: 3034-3046
        • Jenmalm M.C.
        • Cherwinski H.
        • Bowman E.P.
        • Phillips J.H.
        • Sedgwick J.D.
        Regulation of myeloid cell function through the CD200 receptor.
        J Immunol. 2006; 176: 191-199
        • Wright G.J.
        • Jones M.
        • Puklavec M.J.
        • Brown M.H.
        • Barclay A.N.
        The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans.
        Immunology. 2001; 102: 173-179
        • Erin N.
        • Podnos A.
        • Tanriover G.
        • Duymus O.
        • Cote E.
        • Khatri I.
        • Gorczynski R.M.
        Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response.
        Oncogene. 2015; 34: 3860-3870
        • Deckert M.
        • Sedgwick J.D.
        • Fischer E.
        • Schlüter D.
        Regulation of microglial cell responses in murine Toxoplasma encephalitis by CD200/CD200 receptor interaction.
        Acta Neuropathol. 2006; 111: 548-558
        • Booman M.
        • Szuhai K.
        • Rosenwald A.
        • Hartmann E.
        • Kluin-Nelemans H.
        • de Jong D.
        • Schuuring E.
        • Kluin P.
        Genomic alterations and gene expression in primary diffuse large B-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways.
        J Pathol. 2008; 216: 209-217
        • Jordanova E.S.
        • Riemersma S.A.
        • Philippo K.
        • Giphart-Gassler M.
        • Schuuring E.
        • Kluin P.M.
        Hemizygous deletions in the HLA region account for loss of heterozygosity in the majority of diffuse large B-cell lymphomas of the testis and the central nervous system.
        Genes Chromosomes Cancer. 2002; 35: 38-48
        • Schwindt H.
        • Vater I.
        • Kreuz M.
        • Montesinos-Rongen M.
        • Brunn A.
        • Richter J.
        • Gesk S.
        • Ammerpohl O.
        • Wiestler O.D.
        • Hasenclever D.
        • Deckert M.
        • Siebert R.
        Chromosomal imbalances and partial uniparental disomies in primary central nervous system lymphoma.
        Leukemia. 2009; 23: 1875-1884
        • Dorfman D.M.
        • Shahsafaei A.
        CD200 (OX-2 membrane glycoprotein) expression in b cell-derived neoplasms.
        Am J Clin Pathol. 2010; 134: 726-733
        • Moreaux J.
        • Hose D.
        • Reme T.
        • Jourdan E.
        • Hundemer M.
        • Legouffe E.
        • Moine P.
        • Bourin P.
        • Moos M.
        • Corre J.
        • Mohler T.
        • De Vos J.
        • Rossi J.F.
        • Goldschmidt H.
        • Klein B.
        CD200 is a new prognostic factor in multiple myeloma.
        Blood. 2006; 108: 4194-4197
        • Moreaux J.
        • Veyrune J.L.
        • Reme T.
        • De Vos J.
        • Klein B.
        CD200: a putative therapeutic target in cancer.
        Biochem Biophys Res Commun. 2008; 366: 117-122
        • Tonks A.
        • Hills R.
        • White P.
        • Rosie B.
        • Mills K.I.
        • Burnett A.K.
        • Darley R.L.
        CD200 as a prognostic factor in acute myeloid leukaemia.
        Leukemia. 2007; 21: 566-568
        • Ngwa C.
        • Liu F.
        CD200-CD200R signaling and diseases: a potential therapeutic target?.
        Int J Physiol Pathophysiol Pharmacol. 2019; 11: 297-309
        • Deckert M.
        • Engert A.
        • Brück W.
        • Ferreri A.J.
        • Finke J.
        • Illerhaus G.
        • Klapper W.
        • Korfel A.
        • Küppers R.
        • Maarouf M.
        • Montesinos-Rongen M.
        • Paulus W.
        • Schlegel U.
        • Lassmann H.
        • Wiestler O.D.
        • Siebert R.
        • DeAngelis L.M.
        Modern concepts in the biology, diagnosis, differential diagnosis and treatment of primary central nervous system lymphoma.
        Leukemia. 2011; 25: 1797-1807
        • Haas J.
        • Rudolph H.
        • Costa L.
        • Faller S.
        • Libicher S.
        • Würthwein C.
        • Jarius S.
        • Ishikawa H.
        • Stump-Guthier C.
        • Tenenbaum T.
        • Schwerk C.
        • Schroten H.
        • Wildemann B.
        The choroid plexus is permissive for a preactivated antigen-experienced memory B-cell subset in multiple sclerosis.
        Front Immunol. 2020; 11618544
        • Assaf N.
        • Hasson T.
        • Hoch-Marchaim H.
        • Pe'er J.
        • Gnessin H.
        • Deckert-Schlüter M.
        • Wiestler O.D.
        • Hochman J.
        An experimental model for infiltration of malignant lymphoma to the eye and brain.
        Virchows Arch. 1997; 431: 459-467
        • Hochman J.
        • Assaf N.
        • Deckert-Schlüter M.
        • Wiestler O.D.
        • Pe'er J.
        Entry routes of malignant lymphoma into the brain and eyes in a mouse model.
        Cancer Res. 2001; 61: 5242-5247
        • März M.
        • Meyer S.
        • Erb U.
        • Georgikou C.
        • Horstmann M.A.
        • Hetjens S.
        • Weiß C.
        • Fallier-Becker P.
        • Vandenhaute E.
        • Ishikawa H.
        • Schroten H.
        • Dürken M.
        • Karremann M.
        Pediatric acute lymphoblastic leukemia-conquering the CNS across the choroid plexus.
        Leuk Res. 2018; 71: 47-54
        • Rajakumar S.A.
        • Grandal I.
        • Minden M.D.
        • Hitzler J.K.
        • Guidos C.J.
        • Danska J.S.
        Targeted blockade of immune mechanisms inhibit B precursor acute lymphoblastic leukemia cell invasion of the central nervous system.
        Cell Rep Med. 2021; 2100470
        • Huang J.
        • Li Y.
        • Tang Y.
        • Tang G.
        • Yang G.Y.
        • Wang Y.
        CXCR4 antagonist AMD3100 protects blood-brain barrier integrity and reduces inflammatory response after focal ischemia in mice.
        Stroke. 2013; 44: 190-197
        • Rabinovich-Nikitin I.
        • Ezra A.
        • Barbiro B.
        • Rabinovich-Toidman P.
        • Solomon B.
        Chronic administration of AMD3100 increases survival and alleviates pathology in SOD1(G93A) mice model of ALS.
        J Neuroinflammation. 2016; 13: 123
        • Montesinos-Rongen M.
        • Sanchez-Ruiz M.
        • Siebert S.
        • Winter C.
        • Siebert R.
        • Brunn A.
        • Deckert M.
        Expression of Cas9 in a syngeneic model of primary central nervous system lymphoma induces intracerebral NK and CD8 T cell-mediated lymphoma cell lysis via perforin.
        CRISPR J. 2022; 5: 726-739