Advertisement
Regular article|Articles in Press

Mutation of TP53 Confers Ferroptosis Resistance in Lung Cancer Through the FOXM1/MEF2C Axis

  • Muyun Peng
    Affiliations
    Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
    Search for articles by this author
  • Qikang Hu
    Affiliations
    Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
    Search for articles by this author
  • Zeyu Wu
    Affiliations
    Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
    Search for articles by this author
  • Bin Wang
    Affiliations
    Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
    Search for articles by this author
  • Cheng Wang
    Affiliations
    Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
    Search for articles by this author
  • Fenglai Yu
    Correspondence
    Address correspondence to Fenglai Yu, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Rd., Furong District, Changsha, Hunan Province 410011, People’s Republic of China.
    Affiliations
    Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
    Search for articles by this author
      Ferroptosis is a highly regulated tumor suppressor process. Loss or mutation of TP53 can cause changes in sensitivity to ferroptosis. Mutations in TP53 may be associated with the malignant or indolent progression of ground glass nodules in early lung cancer, but whether ferroptosis may also be involved in determining this biological process has not yet been determined. Using in vivo and in vitro gain- and loss-of-function approaches, this study used clinical tissue for mutation analysis and pathological research to examine whether wild-type TP53 inhibits the expression of forkhead box M1 (FOXM1) by binding to peroxisome proliferator-activated receptor-γ coactivator 1α, maintaining the mitochondrial function and thus affecting the sensitivity to ferroptosis, whereas this function is absent in mutant cells, resulting in overexpression of FOXM1 and ferroptosis resistance. Mechanistically, FOXM1 can activate the transcription level of myocyte-specific enhancer factor 2C in the mitogen-activated protein kinase signaling pathway, leading to stress protection when exposed to ferroptosis inducers. This study provides new insights into the mechanism of association between TP53 mutation and ferroptosis tolerance, which can aid a deeper understanding of the role of TP53 in the malignant progression of lung cancer.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of Pathology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Neal R.D.
        • Sun F.
        • Emery J.D.
        • Callister M.E.
        Lung cancer.
        BMJ. 2019; 365: l1725
        • Thai A.A.
        • Solomon B.J.
        • Sequist L.V.
        • Gainor J.F.
        • Heist R.S.
        Lung cancer.
        Lancet. 2021; 398: 535-554
        • Lemjabbar-Alaoui H.
        • Hassan O.U.
        • Yang Y.W.
        • Buchanan P.
        Lung cancer: biology and treatment options.
        Biochim Biophys Acta. 2015; 1856: 189-210
        • Jia Z.
        • Wang Y.
        • Xue J.
        • Yang X.
        • Bing Z.
        • Guo C.
        • Gao C.
        • Tian Z.
        • Zhang Z.
        • Kong H.
        • He Q.
        • Su Z.
        • Liu Y.
        • Song Y.
        • Liang D.
        • Liang N.
        • Li S.
        • Gao Y.
        DNA methylation patterns at and beyond the histological margin of early-stage invasive lung adenocarcinoma radiologically manifested as pure ground-glass opacity.
        Clin Epigenetics. 2021; 13: 153
        • Sun F.
        • Xi J.
        • Zhan C.
        • Yang X.
        • Wang L.
        • Shi Y.
        • Jiang W.
        • Wang Q.
        Ground glass opacities: imaging, pathology, and gene mutations.
        J Thorac Cardiovasc Surg. 2018; 156: 808-813
        • El-Telbany A.
        • Ma P.C.
        Cancer genes in lung cancer: racial disparities: are there any?.
        Genes Cancer. 2012; 3: 467-480
        • Takahashi T.
        • Nau M.M.
        • Chiba I.
        • Birrer M.J.
        • Rosenberg R.K.
        • Vinocour M.
        • Levitt M.
        • Pass H.
        • Gazdar A.F.
        • Minna J.D.
        p53: a frequent target for genetic abnormalities in lung cancer.
        Science. 1989; 246: 491-494
        • Ozaki T.
        • Nakagawara A.
        Role of p53 in cell death and human cancers.
        Cancers (Basel). 2011; 3: 994-1013
        • Hollstein M.
        • Sidransky D.
        • Vogelstein B.
        • Harris C.C.
        p53 mutations in human cancers.
        Science. 1991; 253: 49-53
        • Lane D.P.
        Cancer. p53, guardian of the genome.
        Nature. 1992; 358: 15-16
        • Ahrendt S.A.
        • Hu Y.
        • Buta M.
        • McDermott M.P.
        • Benoit N.
        • Yang S.C.
        • Wu L.
        • Sidransky D.
        p53 mutations and survival in stage I non-small-cell lung cancer: results of a prospective study.
        J Natl Cancer Inst. 2003; 95: 961-970
        • Liu G.
        • Chen X.
        Regulation of the p53 transcriptional activity.
        J Cell Biochem. 2006; 97: 448-458
        • Fridman J.S.
        • Lowe S.W.
        Control of apoptosis by p53.
        Oncogene. 2003; 22: 9030-9040
        • Chen X.
        • Kang R.
        • Kroemer G.
        • Tang D.
        Broadening horizons: the role of ferroptosis in cancer.
        Nat Rev Clin Oncol. 2021; 18: 280-296
        • Xiong R.
        • He R.
        • Liu B.
        • Jiang W.
        • Wang B.
        • Li N.
        • Geng Q.
        Ferroptosis: a new promising target for lung cancer therapy.
        Oxid Med Cell Longev. 2021; 20218457521
        • Tarangelo A.
        • Magtanong L.
        • Bieging-Rolett K.T.
        • Li Y.
        • Ye J.
        • Attardi L.D.
        • Dixon S.J.
        p53 Suppresses metabolic stress-induced ferroptosis in cancer cells.
        Cell Rep. 2018; 22: 569-575
        • Liu Y.
        • Gu W.
        p53 in ferroptosis regulation: the new weapon for the old guardian.
        Cell Death Differ. 2022; 29: 895-910
        • Kuganesan N.
        • Dlamini S.
        • Tillekeratne L.M.V.
        • Taylor W.R.
        Tumor suppressor p53 promotes ferroptosis in oxidative stress conditions independent of modulation of ferroptosis by p21, CDKs, RB, and E2F.
        J Biol Chem. 2021; 297101365
        • Thompson L.R.
        • Oliveira T.G.
        • Hermann E.R.
        • Chowanadisai W.
        • Clarke S.L.
        • Montgomery M.R.
        Distinct TP53 mutation types exhibit increased sensitivity to ferroptosis independently of changes in iron regulatory protein activity.
        Int J Mol Sci. 2020; 21
        • Lin X.
        • Peng M.
        • Chen Q.
        • Yuan M.
        • Chen R.
        • Deng H.
        • Deng J.
        • Liu O.
        • Weng Y.
        • Chen M.
        • Zhou C.
        Identification of the unique clinical and genetic features of chinese lung cancer patients with EGFR germline mutations in a large-scale retrospective study.
        Front Oncol. 2021; 11774156
        • Liao G.B.
        • Li X.Z.
        • Zeng S.
        • Liu C.
        • Yang S.M.
        • Yang L.
        • Hu C.J.
        • Bai J.Y.
        Regulation of the master regulator FOXM1 in cancer.
        Cell Commun Signal. 2018; 16: 57
        • Liang S.K.
        • Hsu C.C.
        • Song H.L.
        • Huang Y.C.
        • Kuo C.W.
        • Yao X.
        • Li C.C.
        • Yang H.C.
        • Hung Y.L.
        • Chao S.Y.
        • Wu S.C.
        • Tsai F.R.
        • Chen J.K.
        • Liao W.N.
        • Cheng S.C.
        • Tsou T.C.
        • Wang I.C.
        FOXM1 is required for small cell lung cancer tumorigenesis and associated with poor clinical prognosis.
        Oncogene. 2021; 40: 4847-4858
        • Tang B.
        • Yan R.
        • Zhu J.
        • Cheng S.
        • Kong C.
        • Chen W.
        • Fang S.
        • Wang Y.
        • Yang Y.
        • Qiu R.
        • Lu C.
        • Ji J.
        Integrative analysis of the molecular mechanisms, immunological features and immunotherapy response of ferroptosis regulators across 33 cancer types.
        Int J Biol Sci. 2022; 18: 180-198
        • Renault V.M.
        • Thekkat P.U.
        • Hoang K.L.
        • White J.L.
        • Brady C.A.
        • Kenzelmann Broz D.
        • Venturelli O.S.
        • Johnson T.M.
        • Oskoui P.R.
        • Xuan Z.
        • Santo E.E.
        • Zhang M.Q.
        • Vogel H.
        • Attardi L.D.
        • Brunet A.
        The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor.
        Oncogene. 2011; 30: 3207-3221
        • Yao S.
        • Fan L.Y.
        • Lam E.W.
        The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance.
        Semin Cancer Biol. 2018; 50: 77-89
        • Parikh N.
        • Hilsenbeck S.
        • Creighton C.J.
        • Dayaram T.
        • Shuck R.
        • Shinbrot E.
        • Xi L.
        • Gibbs R.A.
        • Wheeler D.A.
        • Donehower L.A.
        Effects of TP53 mutational status on gene expression patterns across 10 human cancer types.
        J Pathol. 2014; 232: 522-533
        • Hayes J.D.
        • Dinkova-Kostova A.T.
        • Tew K.D.
        Oxidative stress in cancer.
        Cancer Cell. 2020; 38: 167-197
        • Gravel S.P.
        Deciphering the dichotomous effects of PGC-1alpha on tumorigenesis and metastasis.
        Front Oncol. 2018; 8: 75
        • Tabnak P.
        • HajiEsmailPoor Z.
        • Soraneh S.
        Ferroptosis in lung cancer: from molecular mechanisms to prognostic and therapeutic opportunities.
        Front Oncol. 2021; 11792827
        • Chen K.
        • Zhang S.
        • Jiao J.
        • Zhao S.
        Ferroptosis and its potential role in lung cancer: updated evidence from pathogenesis to therapy.
        J Inflamm Res. 2021; 14: 7079-7090
        • Kobayashi S.
        • Boggon T.J.
        • Dayaram T.
        • Janne P.A.
        • Kocher O.
        • Meyerson M.
        • Johnson B.E.
        • Eck M.J.
        • Tenen D.G.
        • Halmos B.
        EGFR mutation and resistance of non-small-cell lung cancer to gefitinib.
        N Engl J Med. 2005; 352: 786-792
        • Yang L.
        • Zhou Y.
        • Li Y.
        • Zhou J.
        • Wu Y.
        • Cui Y.
        • Yang G.
        • Hong Y.
        Mutations of p53 and KRAS activate NF-kappaB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells.
        Cancer Lett. 2015; 357: 520-526
        • Lei G.
        • Zhang Y.
        • Hong T.
        • Zhang X.
        • Liu X.
        • Mao C.
        • Yan Y.
        • Koppula P.
        • Cheng W.
        • Sood A.K.
        • Liu J.
        • Gan B.
        Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity.
        Oncogene. 2021; 40: 3533-3547
        • Halasi M.
        • Gartel A.L.
        FOX(M1) news--it is cancer.
        Mol Cancer Ther. 2013; 12: 245-254
        • Barsotti A.M.
        • Prives C.
        Pro-proliferative FoxM1 is a target of p53-mediated repression.
        Oncogene. 2009; 28: 4295-4305
        • Bost F.
        • Kaminski L.
        The metabolic modulator PGC-1alpha in cancer.
        Am J Cancer Res. 2019; 9: 198-211
        • Battaglia A.M.
        • Chirillo R.
        • Aversa I.
        • Sacco A.
        • Costanzo F.
        • Biamonte F.
        Ferroptosis and Cancer: Mitochondria meet the "Iron Maiden" cell death.
        Cells. 2020; 9: 1505
        • Gentric G.
        • Kieffer Y.
        • Mieulet V.
        • Goundiam O.
        • Bonneau C.
        • Nemati F.
        • Hurbain I.
        • Raposo G.
        • Popova T.
        • Stern M.H.
        • Lallemand-Breitenbach V.
        • Muller S.
        • Caneque T.
        • Rodriguez R.
        • Vincent-Salomon A.
        • de The H.
        • Rossignol R.
        • Mechta-Grigoriou F.
        PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers.
        Cell Metab. 2019; 29: 156-173.e10
        • Khiem D.
        • Cyster J.G.
        • Schwarz J.J.
        • Black B.L.
        A p38 MAPK-MEF2C pathway regulates B-cell proliferation.
        Proc Natl Acad Sci U S A. 2008; 105: 17067-17072
        • Bao Z.
        • Hua L.
        • Ye Y.
        • Wang D.
        • Li C.
        • Xie Q.
        • Wakimoto H.
        • Gong Y.
        • Ji J.
        MEF2C silencing downregulates NF2 and E-cadherin and enhances Erastin-induced ferroptosis in meningioma.
        Neuro Oncol. 2021; 23: 2014-2027