Benign prostate hyperplasia (BPH) is a common disease characterized by the nonmalignant hyperproliferation of the stromal and/or glandular cell compartments in the transition zone of the prostate, leading to bladder outlet obstruction and lower urinary tract symptoms (LUTS).1,2 LUTS are particularly prevalent in the aging population and markedly}

Benign prostate hyperplasia (BPH) is caused by the nonmalignant enlargement of the transition zone of the prostate gland, leading to lower urinary tract symptoms. Although current medical treatments are unsatisfactory in many patients, the limited understanding of the mechanisms driving disease progression prevents the development of alternative therapeutic strategies. The probasin-prolactin (Pb-PRL) transgenic mouse recapitulates many histopathological features of human BPH. Herein, these alterations parallel urodynamic disturbance reminiscent of lower urinary tract symptoms. Single-cell RNA-sequencing analysis of Pb-PRL mouse prostates revealed that their epithelium mainly includes low-androgen signaling cell populations analogous to Club/Hillock cells enriched in the aged human prostate. These intermediate cells are predicted to result from the reprogramming of androgen-dependent luminal cells. Pb-PRL mouse prostates exhibited increased vulnerability to oxidative stress due to reduction of antioxidant enzyme expression. One-month treatment of Pb-PRL mice with anethole trithione (ATT), a specific inhibitor of mitochondrial ROS production, reduced prostate weight and voiding frequency. In human BPH-1 epithelial cells, ATT decreased mitochondrial metabolism, cell proliferation, and stemness features. ATT prevented the growth of organoids generated by sorted Pb-PRL basal and LSC med cells, the two major BPH-associated, androgen-independent epithelial cell compartments. Taken together, these results support cell plasticity as a driver of BPH progression and therapeutic resistance to androgen signaling inhibition, and identify antioxidant therapy as a promising treatment of BPH. (Am J Pathol 2024, 194: 30−51; https://doi.org/10.1016/j.ajpath.2023.09.010)
affect the quality of life of patients. The only etiologic treatment of LUTS involves 5α-reductase inhibitors (5-ARIs) that block intraprostatic conversion of testosterone into its active metabolite dihydrotestosterone, leading to apoptosis of androgen-dependent cells of the glandular epithelium. Although up to 25% prostate size reduction can be observed after 1-year treatment, approximately half of the patients are unsatisfactorily treated due to incomplete clinical response or resurgence of BPH progression within 4 years. Moreover, 5-ARIs induce a range of side effects (decreased libido, erectile dysfunctions, and gynecomastia), strongly reducing patient compliance in the long term.

Oxidative stress is commonly associated with age-related diseases, including BPH. Hallmarks of oxidative stress (e.g., malondialdehyde, peroxidized lipids, carbonylated proteins) are elevated in serum and/or in the prostatic epithelium of BPH patients. These features parallel prostate weight and are inversely correlated to the activity of antioxidant enzymes such as catalase and glutathione peroxidases in the prostatic tissue. The actual role of oxidative stress in BPH pathogenesis is poorly understood, and the potential benefit of antioxidant therapy in preclinical models of BPH is unexplored.

The Pb-PRL mouse prostate is enriched in a peculiar cell population called LSCmed. LSCmed defines nonsecretory luminal cells that exhibit a specific transcriptomic profile enriched in stemness markers (Pscα, Tactstd2, Cld44, Sox2, Sca-1), and are able to generate organoids in vitro and glandular epithelium in vivo. Importantly, LSCmed cells are tolerant to androgen deprivation, and LSCmed cells show molecular similarity with Club cells of the human prostate. Club cells are proposed to be urethral cells that extend into the proximal ducts of the prostate transition zone, where BPH develops. They are enriched in BPH compared with healthy prostate, and this phenotype is aggravated by 5-ARI treatment, which is proposed to result from luminal cell reprogramming into Club-like cells. Together, these observations suggest that cells exhibiting LSCmed/Club-like features may contribute to BPH development and therapeutic resistance.

Based on its human BPH-related hallmarks, the Pb-PRL mouse is emerging as one of the most relevant preclinical BPH models. As such, it has been used to challenge new therapeutic options for BPH. In keeping with this, the first aim of this study was to use single-cell RNA sequencing (scRNAseq) to elucidate the complex cell composition of hypertrophied Pb-PRL prostates and progress in our understanding of BPH pathobiology. The data revealed the emergence of various low-androgen signaling cell states intermediate between basal and luminal lineages, suggesting epithelial cell plasticity reminiscent of that hypothesized in the human disease. The second aim was to explore the therapeutic benefit of antioxidant therapy for the treatment of BPH.

Materials and Methods

Mice

The Pb-PRL mouse carries the rat prolactin transgene driven by the prostate-specific short probasin promoter. Colonies established on C57BL/6J background were housed on a 12:12 hour light/dark cycle with normal chow diet. Information on experimental animals (Pb-Prl+/−) used in this study (number, age, housing) is reported in Table 1. All experiments were approved by local ethical committees for animal experiments (APAFIS#18297-2018032710526065 v2 and APAFIS#12547-2017112008275221 v7).

Antioxidant Treatment

Anethol trithione (ATT) was supplied by Zion Pharma (Marseille, France) as an orange/brown powder (raw material for SULFARLEM, purity 98.7% produced by M21 SALIN, Salin de Giraud, France, lot GIG203503).

For animal studies, ATT was resuspended extemporaneously in pure coconut oil (C1758-500G; Sigma-Aldrich, Saint-Quentin-Fallavier, France) at a concentration of 15 mg/mL. The effects of antioxidant therapy on urodynamic and cellular/molecular parameters of Pb-PRL mice were determined after 30 days of daily oral treatment with ATT (60 mg/kg/day) versus vehicle (coconut oil). This dosing allows a T1/2 plasma concentration (approximately 150 ng/mL, as determined by mass spectrometry) similar to what is observed in humans after 75 mg oral dosing. For cell studies, ATT was dissolved in pure dimethyl sulfoxide (DMSO) at a concentration of 10 mmol/L. The effects of antioxidant therapy on urodynamic and cellular/molecular parameters of Pb-PRL mice were determined after 30 days of daily oral treatment with ATT (60 mg/kg/day) versus vehicle (coconut oil). This dosing allows a T1/2 plasma concentration (approximately 150 ng/mL, as determined by mass spectrometry) similar to what is observed in humans after 75 mg oral dosing.

Urodynamic Parameters

Urodynamic parameters were determined at Humana Biosciences (CREFRE, Toulouse, France) using specialized metabolic cages (Shinfactory, Fukuoka, Japan) installed in a separate quiet room of the animal facility. The floor of each cage consists of a patented mesh that allows urine to pass through but traps feces. A square-shaped water-repellent funnel positioned below the mesh directed voided urine
that passed through it into a container located on a precise balance meter (GX-1003A; A&D Company Ltd., Tokyo, Japan). Quantities of water and food sufficient to last for a few days were prepared for administration through the supply line and feeder box, respectively. Food and water were ad libitum.

Basal urodynamic parameters were determined by putting mice in these metabolic cages for 48 hours. The first 24 hours allowed animal acclimatization to their new environment. After the acclimatization period, data on voided urine (weight and timing) and water consumption (volume and timing) were continuously collected for each mouse over a further 24 hours using a Micro1401 data acquisition system (Cambridge Electronic Design, Milton, Cambridge, UK). Data were converted by a digitizer to digital signals and entered into a computer for analysis by Spike II software (Cambridge Electronic Design). Data include food intake (g/day) (not shown), water intake (mL/day), urine output volume (mL/day), voiding frequency (times/dark period and/light period), urine volume per voiding (mL), voiding duration (seconds), and mean uroflow rate (mL/second) calculated as the urine volume per voiding (mL)/voiding duration (seconds).

Before starting the chronic treatment of Pb-PRL mice with ATT, the basal urodynamic parameters were determined as described above for each Pb-PRL mouse. Following this step, daily treatment by oral route with ATT or vehicle was started. ATT (15 mg/mL) was administered by oral gavage (60 mg/kg/day) once a day between 9 and 11 AM, for 30 consecutive days. Due to the lack of administration of the drug on Sunday, a double dose of ATT (120 mg/kg) was administered on Saturday mornings (the half-life of ATT following oral administration in mice is around 30 minutes). On the 29th day, mice were again transferred into metabolic cages for acclimatization and stabilization of urodynamic parameters (24 hours) before measurements of urodynamic parameters for each mouse (next 24 hours).

ATT was administered during the first and second days of permanence in the metabolic cages. At the end of urodynamic recordings, mice were euthanized by cervical dislocation, and exsanguination was performed by sectioning of the abdominal aorta. Urogenital tissues (urinary bladder, urethra, anterior prostates, and whole prostate) were gently blotted on a filter paper and weighted using an electronic microbalance. Organ weights are expressed as a function of each mouse body weight. Results are presented as means ± SD using statistical tests as indicated in the figure captions. All differences were considered statistically significant when the null hypothesis can be rejected at a risk α of <0.05.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>In Vivo Experimentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Mice</td>
</tr>
<tr>
<td>Urodynamic tests</td>
<td>17 Pb-PRL versus 15 WT (4–7-month—old, ie, established BPH)</td>
</tr>
<tr>
<td>Pb-PRL phenotype</td>
<td>ATT treatment</td>
</tr>
<tr>
<td>ATT treatment</td>
<td>2 vehicle-treated Pb-PRL (#504, #756) versus 2 ATT-treated Pb-PRL (#506, #748) (6–8-month—old, ie, established BPH)</td>
</tr>
<tr>
<td>scRNAseq</td>
<td>3 Pb-PRL mice (6–8-month—old, ie, established BPH)</td>
</tr>
<tr>
<td>Affymetrix of sorted epithelial cells</td>
<td>Pb-PRL and WT mice (6–8-month—old, ie, established BPH)</td>
</tr>
<tr>
<td>Other studies (organoids, quantitative RT-PCR, immunoblotting, immunohistochemistry, cell sorting)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Antibodies for Immunohistochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins</td>
<td>Species dilution</td>
</tr>
<tr>
<td>Ki-67</td>
<td>Rabbit</td>
</tr>
<tr>
<td>KRT4</td>
<td>Rabbit</td>
</tr>
<tr>
<td>P-Stat5</td>
<td>Rabbit</td>
</tr>
<tr>
<td>Anti-rabbit</td>
<td>1/1000</td>
</tr>
</tbody>
</table>

NA, not applicable.
Single-Cell RNA-Sequencing

Prostates of four Pb-PRL mice treated for 30 days with vehicle (n = 2) or ATT (n = 2) (Table 1) were harvested, carefully excluding the urethra. Prostate tissue was dissected and digested as described, then dead cells (SYTOX Blue-positive) and Ter119-positive cells (erythrocytes) were eliminated by flow cytometry (BD FACS Aria III; BD Biosciences, San Jose, CA).

The scRNAseq libraries were generated using Chromium Single Cell Next Gem 3 Library & Gel Bead Kit v.3.1 (10x Genomics, Pleasanton, CA) according to the manufacturer’s protocol. Briefly, cells were counted, diluted at 1000 cells/µL in PBS+ 0.04%, and 20,000 viable cells (10,200 for #756 mouse) were loaded in the 10x Chromium Controller to generate single-cell gel beads in emulsion. After reverse transcription, gel beads in emulsion were disrupted. Bar-coded complementary DNA was isolated and amplified by PCR. Following fragmentation, end repair, and A-tailing, sample indexes were added during index PCR. The purified libraries were sequenced on a Novaseq (Illumina) with 28 cycles of read 1, 8 cycles of i7 index, and 91 cycles of read 2.

The sequencing reads of the Pb-PRL mice were demultiplexed and aligned to the human reference transcriptome (mm10-2020-A directly downloaded from 10x Genomics). The unfiltered raw UMI counts from Cell Ranger were uploaded into Seurat software version 4.0.39 for quality control, data integration, and downstream analyses. The wild-type (WT) reads were downloaded from the GSE172515 Gene Expression Omnibus (GEO) repository40 (https://www.ncbi.nlm.nih.gov/geo, accession number GSE172515). Duplets, empty sequencing beads, and apoptotic cells were removed by filtering out cells with fewer than 50 features or a mitochondrial content higher than 20%.

Data from each sample were normalized and scaled using the log normalization method, and batch effect between samples was corrected using Seurat. A total of 51,307 cells for the mouse data set (3 WT, 2 Pb-PRL—vehicle, 2 Pb-PRL—ATT) and 83,894 from the human data set30 (11 samples from 3 healthy and 4 untreated BPH subjects) were retained after filtering, and all

Table 3

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primer direction</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>Actb Forward 5’-GATCTGTTAGAACTTTTGGTC-3’</td>
<td></td>
</tr>
<tr>
<td>Gpx4 Reverse 5’-TGATGCAAAGCTTTTGGTC-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sod1 Reverse 5’-GATCTGTTAGAACTTTTGGTC-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sod2 Reverse 5’-GACCTTGCTCTCTTTAGGA-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat Reverse 5’-GATCTGTTAGAACTTTTGGTC-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nrf2 Reverse 5’-GACCTTGCTCTCTTTAGGA-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Reverse 5’-GACCTTGCTCTCTTTAGGA-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human ACTB Forward 5’-AGAGACTGAGGGCTTTGTC-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRT4 Reverse 5’-GATCTGTTAGAACTTTTGGTC-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPARG1 Reverse 5’-GACCTTGCTCTCTTTAGGA-3’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Species dilution</th>
<th>Clone, reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH Mouse 1/1000 in nonfat milk 5%</td>
<td>Sc-47324, Santa Cruz Biotechnology (Heidelberg, Germany)</td>
<td></td>
</tr>
<tr>
<td>P21 Mouse 1/1000 in nonfat milk 5%</td>
<td>Sc-6246, Santa Cruz Biotechnology</td>
<td></td>
</tr>
<tr>
<td>PPARγ Rabbit 1/1000 in BSA 3%</td>
<td>C26H12, Cell Signaling Technology</td>
<td></td>
</tr>
<tr>
<td>FABP4 Rabbit 1/1000 in nonfat milk 5%</td>
<td>2120S, Cell Signaling Technology</td>
<td></td>
</tr>
<tr>
<td>MDA Mouse 1/1000 in BSA 5%</td>
<td>Ab-243066, 11E3, Abcam (Paris, France)</td>
<td></td>
</tr>
<tr>
<td>Anti-rabbit 1/10,000 in nonfat milk 5%</td>
<td>7045S, Cell Signaling Technology</td>
<td></td>
</tr>
<tr>
<td>Anti-mouse 1/10,000 in nonfat milk 5%</td>
<td>7046S, Cell Signaling Technology</td>
<td></td>
</tr>
</tbody>
</table>

In Silico scRNAseq Analyses

scRNAseq data of vehicle-treated Pb-PRL mice (referred to as Pb-PRL mice in Figures 1, 2, and 3 for clarity) were compared with scRNAseq data sets of three WT mice (#1, #3, #7) from Joseph et al.30 excluding urethral cells. Each sample was processed independently and then integrated together using the standard integration methods provided by Seurat. A total of 51,307 cells for the mouse data set (3 WT, 2 Pb-PRL—vehicle, 2 Pb-PRL—ATT), and 83,894 from the human data set30 (11 samples from 3 healthy and 4 untreated BPH subjects) were retained after filtering, and all

Table 4

<table>
<thead>
<tr>
<th>Antibodies for Western Blotting</th>
<th>Species dilution</th>
<th>Clone, reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH Mouse 1/1000 in nonfat milk 5%</td>
<td>Sc-47324, Santa Cruz Biotechnology (Heidelberg, Germany)</td>
<td></td>
</tr>
<tr>
<td>P21 Mouse 1/1000 in nonfat milk 5%</td>
<td>Sc-6246, Santa Cruz Biotechnology</td>
<td></td>
</tr>
<tr>
<td>PPARγ Rabbit 1/1000 in BSA 3%</td>
<td>C26H12, Cell Signaling Technology</td>
<td></td>
</tr>
<tr>
<td>FABP4 Rabbit 1/1000 in nonfat milk 5%</td>
<td>2120S, Cell Signaling Technology</td>
<td></td>
</tr>
<tr>
<td>MDA Mouse 1/1000 in BSA 5%</td>
<td>Ab-243066, 11E3, Abcam (Paris, France)</td>
<td></td>
</tr>
<tr>
<td>Anti-rabbit 1/10,000 in nonfat milk 5%</td>
<td>7045S, Cell Signaling Technology</td>
<td></td>
</tr>
<tr>
<td>Anti-mouse 1/10,000 in nonfat milk 5%</td>
<td>7046S, Cell Signaling Technology</td>
<td></td>
</tr>
</tbody>
</table>

BSA, bovine serum albumin.
clusters were annotated using a list of manually curated gene markers.

Differential expression was performed on the different groups using the FindMarkers function of Seurat on the RNA assay with default parameters (Wilcoxon testing with Bonferroni correction). Only genes with adjusted $P < 0.05$ were selected as significant. The lists of differentially expressed genes were further divided into UP- and DOWN-regulated genes based on the avg_log2FC; avg_log2FC >0 for the UP-regulated genes and avg_log2FC <0 for the DOWN-regulated ones. Pathway enrichment analysis was performed using the FGSEA package and gene set from the mouse collections of MsigDB. Signatures were calculated from curated list of genes [LSCmed cells, Club cells, Hillock cells, AR-up and AR-down signaling, STAT5, antioxidant and PRL receptorome (GSEA, https://www.gsea-msigdb.org/gsea/msigdb/cards/REACTOME_PROLACTIN_RECEPTOR_SIGNALING, last accessed August 20, 2023)] (Supplemental Table S1) using the AddModuleScore_Ucell function from the R package Ucell [https://github.com/carmonalab/UCell]. For trajectory analyses (cell plasticity), the BAM files generated by Cell Ranger were processed independently using the velocyto version 0.17.17 software with default parameters, and the resulting loom files were load, integrated, and then analyzed with scVelo version 0.2.0. The average velocity values associated to each cluster were then projected on the UMAP. scRNAseq data have been uploaded to the GEO repository (https://www.ncbi.nlm.nih.gov/geo, accession number GSE235859).

Transcriptomic Analysis of Sorted Pb-PRL Epithelial Cells

Gene expression analysis of basal, LSCmed, and luminal cells sorted from Pb-PRL mice was performed using GeneChip Mouse Transcriptome Arrays 1.0 (Affymetrix, Santa Clara, CA), interrogating more than 6.0 million probes covering coding transcripts (70% of probes) and noncoding transcripts (30% of probes). The experiment was performed together with previously described analysis of cognate cell compartments from WT littermates. Microarray data have been deposited on the ArrayExpress repository (BioStudies, https://www.ebi.ac.uk/biostudies/studies/S-BSST1128, last accessed September 13, 2023).

Organoid Assay

Mouse prostate basal and LSCmed cell populations were sorted based on their Lin/Sca-1/CD49f antigenic profile using BD FACSAria III (BD Biosciences) as previously described. For organoid generation, the authors used the reference protocol described by Clevers’ lab, except that N-acetyl-L-cysteine (NAC) was omitted in the culture medium. LSCmed and basal cells sorted from Pb-PRL mouse prostates were plated in triplicate (3000 cells/well) on a Low Growth Factor-containing Corning Matrigel (Sigma-Aldrich, Darmstadt, Germany) layer in a 96-well plate (Sarstedt, Nürnberg, Germany). After 1-day incubation, the medium was removed, and cells were covered by a new layer of Matrigel in order to perform 3-dimensional culture. After the second layer of Matrigel had solidified, 100 μL of fresh medium containing 10 μmol/L ATT (versus DMSO) were added to each well. The medium was changed every other day. After 10 days of Matrigel embedding, organoids were fixed in 4% PFA (Cat. No: 047377.9M; Thermo Fisher Scientific, Kandel, Germany), and images were obtained using a 4× objective under a M5000 EVOS inverted microscope in order to cover the entire surface of the well. Counting (number) and surfacing (size) were performed on QuPath software version 0.3.0 by manually surrounding the organoids.

Cell Lines

The BPH-1 prostate epithelial cell line (immortalized from a 68-year-old BPH patient using SV-40 T-antigen) was purchased in 2019 from DSMZ, German Collection of Microorganisms and Cell Cultures (Braunschweig, Germany; ACC 143, reference 1402). The WPMY-1 prostate myofibroblastic cell line (immortalized from a 54-year-old man using SV-40 T-antigen) was purchased in 2020 from ATCC (Manassas, USA; ATCC CRL-2854). Both cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Glutamax, 4.5 g/L D-glucose + pyruvate, reference 31966-0.21; Gibco, Les Ulis, France) with 10% (BPH-1) or 5% (WPMY-1) fetal bovine serum (CVFSVF00-01; Eurobio Scientific, Les Ulis, France). Cells were passaged every 3 to 4 days.

Expression Array

Two million BPH-1 cells were seeded in a 100-mm Petri dish. Medium was replaced 24 hours after seeding, then fresh medium containing 10 μmol/L ATT or vehicle was added for 72 hours. Cells were trypsinized and centrifuged to dry; pellets were stored at −20°C. RNA was extracted using NucleoSpin (Macherey Nagel, Hoerd, France) according to the manufacturer’s protocol and quantified using Nanodrop 2000 (Thermo Fischer Scientific). RNA quality was checked with BioAnalyzer 2100 (Agilent Technologies, Les Ulis, France), then 5 μL of RNA at a concentration of 120 ng/μL were used for library generation. Clarion_Human arrays were used on the GeneChip 3000 7G scanner (Thermo Fisher Scientific). Results were processed with Transcriptome Analysis Console TAC4.0 (Thermo Fisher Scientific) and normalized with summarization methods RMA. Function pathways were determined using INGENUITY (Qiagen, Courtaboeuf, France) based on a differentially expressed gene list with fold-change 1.2 and $P = 0.05$ (529 genes). Heatmap was done using GraphPad Prism software version 9.3.1 (GraphPad Software, La Jolla,
CA) and a list of differentially expressed genes with fold-change 2 and $P = 0.05$ under t-test (26 genes). Microarray data have been deposited on the ArrayExpress repository (BioStudies, https://www.ebi.ac.uk/biostudies/studies/S-BSST1129, last accessed September 13, 2023).

Live Cell Imaging

BPH-1 and WPMY-1 cells were seeded in 12-well plates at a density of 50,000 cells and 100,000 cells per well, respectively. Images (taken with 20× objective) of the same fields were taken every hour for 72 hours by a real-time IncuCyteS3 Live-Cell analysis system (Essen Bioscience). Confluence areas were analyzed using the IncuCyte software version 2022A, and results are displayed normalized to the initial time point (time $t = 0$).

Cell Numeration

BPH-1 cells were seeded in T75 flasks at the density of 35,000 cells. Fresh media containing ATT or vehicle was changed every 72 hours. Every 7 days, images of the flask were taken using phase contrast microscope (EVOS 5000; Thermo Fisher Scientific) before the cells and the medium were collected and counted using a Malassez cell chamber with Trypan blue.

Seahorse (OCR and ECAR)

BPH-1 and WPMY-1 cells were seeded in a specialized 96-well Seahorse XF96 V3 PS microplate (101085-004; Agilent Technologies) at the density of 1000 and 5000 cells per well, respectively. Seventy-two hours after ATT treatment, cells were incubated for 1 hour in unbuffered XF assay medium (Agilent Technologies) without ATT supplemented sequentially with either 2 mmol/L glutamine, 25 mmol/L glucose (G8769, Sigma-Aldrich), and 1 mmol/L sodium pyruvate for oxygen consumption rate (OCR) analysis, or 2 mmol/L glutamine for extracellular acidification rate (ECAR) analysis. XF Cell Mito Stress Test (103015100; Agilent Technologies) and XF Glycolysis Test assay (103020-100; Agilent Technologies) were used for OCR and ECAR measurement, respectively.

Compounds (all from Sigma-Aldrich) were injected during the assay at the following final concentrations. For OCR measurements: 1 μmol/L oligomycin (Ref. 75351, ATP synthase inhibitor); 0.5 μmol/L FCCP (Ref. 370-86-5, uncoupling agent measuring the maximal respiration capacity); 1 μmol/L antimycin A (Ref. A8674, mETC inhibitor); for ECAR measurements: 10 mmol/L glucose; 1 μmol/L oligomycin; 50 μmol/L 2-deoxyglucose (Ref. D6134, glycolytic inhibitor). Data were recorded using XFe 96 Extracellular Flux Analyzer (Agilent Technologies), normalized using protein concentration, and analyzed using Wave software version 2.6.3 (Agilent Technologies).

Extracellular Lactate and Glucose Measurement

BPH-1 and WPMY-1 cells were seeded in a 12-well plate at a density of 50,000 and 100,000 cells per well, respectively. After 30 minutes, 2 hours, 24 hours, 48 hours, and 72 hours after treatment, 200 μL of the medium of the corresponding wells were taken and put into a 96-well plate end rapidly stored at –20°C. The rest of the media was kept separate to determine protein concentration (Pierce BCA protein assay kit 23225; Thermo Fisher Scientific). Glucose and lactate media concentrations were measured with YSI 2090 Biochemistry analyzer and normalized to protein concentration in the medium.

Mitochondrial Parameters

BPH-1 and WPMY-1 cells were seeded in a 6-well plate at a density of 200,000 and 90,000 cells per well, respectively. After 72 hours of treatment, cells were detached with trypsin (0.05%, 25300054; Gibco), collected, and then stained with different probes (see below) for 20 to 45 minutes at 37°C following the manufacturer’s protocol in DMEM media. After probe staining, dead cells were stained using 2.5 μg/mL of DAPI (D1306; Invitrogen, Villebon-sur-Yvette, France) in HBSS medium (14175-053; Gibco). Viable cell dye intensity was measured by flow cytometry using Fortessa (BD Biosciences). A minimum of 50,000 events were analyzed for each condition. Data were processed using BD FACSDiva software version 9.4 and analyzed using FlowJo software version 10.8.1 (BD FlowJo, Ashland, OR) on a median fluorescence-level gate on live cells.

The probe concentrations were the following (all from Life Technologies, Courtaboeuf, France): 20 nmol/L MitoProbe TMRM (M20036), 50 nmol/L MitoTracker green (M7514), and 50 nmol/L MitoTracker CMXRos (M7512). TMRM-positive control for mitochondrial membrane depolarization was done by treating cells with 50 nmol/L CCCP (M20036; Life Technologies) for 10 minutes at 37°C before staining. Cell viability was measured by the percentage of cells incorporating the DAPI (D1306; Invitrogen).

ALDH Activity

BPH-1 cells were seeded in 6-well plates at a density of 45,000 cells per well. After 72 hours of ATT treatment, medium and cells were collected, and aldehyde dehydrogenase (ALDH) activity was measured using the Aldefluor kit (01700; StemCell Technologies, Saint-Egrève, France) according to manufacturer’s protocol by recording median of fluorescence by flow cytometry using flow cytometer (Fortessa; BD Biosciences). In order to create the ALDH activity-positive gate, a sample of cells from each condition was treated separately with the ALDH activity inhibitor diethylaminobenzaldehyde (DEAB) to provide a negative control. A minimum of 50,000 events were analyzed for each condition. Data were processed using BD FACSDiva.
software and analyzed using FlowJo software on the percentage of ALDH-positive cells (Aldefluor).

Immunohistochemistry

Immunohistochemical analyses were performed using the antibodies listed in Table 2, with pH6 citrate buffer. Antibodies were revealed using Vectastain Elite ABC Peroxidase Standard kit (# PK-6100; Vector Laboratories, Les Ulis, France). Antibodies were diluted in antibody diluent (ZUC025-500 Zytomed; Diagnostics, Blagnac, France) with 0.1% Triton for primary antibodies, and 2% horse serum (S-2000; Vector Laboratories) in PBS-Triton 0.1% for secondary antibody. Primary antibodies, and 2% horse serum (S-2000; Vector Laboratories) in PBS-Triton 0.1% for secondary antibody. Prostate tissue sections (hematoxylin and eosin stain or immunohistochemistry) were digitally scanned using a NanoZoomer-2.0 RT scanner (Hamamatsu Photonics, Massy, France) coupled to NDP.view2 software analysis beta version U12388-01 (Hamamatsu Photonics). For quantification of immunostaining, computer-assisted analysis of digital (scanned) images on whole prostates was performed using QuPath software version 2.0 (https://qupath.github.io). To quantify nuclear immunostaining (Ki-67, pSTAT5, AR) in the epithelium, first, the random forest tree for tissue recognition was used to delineate and only include the glandular areas in the analysis for each prostate lobe that had been manually surrounded and recognized by the software as objects. The positive cell detection command was then applied to each prostate lobe to discriminate DAB (3, 3'-diaminobenzidine) staining-positive (DAB+) versus staining-negative (DAB−) cells. The detection and export steps were fully automated using batch processing script. The index of proliferation (Ki-67) and of STAT5 and AR activation was calculated as the ratio of the number of positive versus total (positive + negative) nuclei counted in the epithelium. The whole procedure was validated by comparing the results obtained by Qu-Path—assisted versus manual counting.

Quantitative PCR

Total RNA was isolated from separate prostate lobes using the NucleoSpin RNA XS (Macherey Nagel, Hoerd, France) for mouse samples or NucleoSpin RNA (Macherey Nagel) for human prostate cell line samples, according to the manufacturer’s instructions. RNA concentrations were measured using Nanodrop 2000 (Thermo Fisher Scientific). RNA (250 ng) was reverse transcribed using GoScript Reverse kit (A5001 for human samples, and A2791 for mouse samples; Promega, Charbonnières-les-Bains, France). The cDNAs, at a final dilution of 1/100 for mouse samples and 1/200 for human samples, were then subjected to real-time PCR amplification using gene-specific primers (Table 3) at a final concentration of 400 nmol/L and purchased from Sigma-Aldrich (KiCqStart SYBR green probe), except mouse Nrf2 and Ar (Integrated DNA Technologies Europe, Leuven, Belgium), which were used at 1× final concentration. Real-time PCR was performed using Quantower software version 2.0 (Analytik Jena, Jena, Germany). The real-time quantitative PCR (qPCR) reaction contained 2 μL of cDNA sample (25 ng for mouse and 12.5 ng for human) and 10 μL of master mix with 1× GoTaq qPCR Master Mix (A6002; Promega) and 0.8 μL primer (10 μmol/L) and 7.2 μL of RNA/DNA-free water. Actin was used as housekeeping gene in each reaction. The Qtower 2.0 Instrument was used with the following program: enzyme activation: 95°C for 2 minutes; amplification (40 cycles): 95°C for 15 seconds, 60°C for 60 seconds. Results were generated with Qtower software version 2.0, and analyzed by the comparative cycle threshold method, and presented as fold change in gene expression relative to actin expression.

Western Blotting

Freshly trypsinized cells were centrifuged to dry pellets were snap-frozen in liquid nitrogen and stored at −20°C until processing. Cells were lysed with RIPA buffer (Handmade, NaCl 150 mmol/L, Tris 50 mmol/L, pH 8, NP40 1%, SDS 0.1%, Na-deoxycholate 0.5%) with protease and phosphatase inhibitor cocktail (PPI 78445; Thermo Fisher Scientific). Protein concentrations were determined with Pierce BCA protein assay kit (23225; Thermo Fischer Scientific) using a density optic plate reader (ClarioSTAR, BMG Biotech, Champigny sur Marne, France). Equal protein concentrations (15 to 50 μg) were diluted and denatured in 4× Laemmli buffer (Nupage NP007; Invitrogen) with 2% of β-mercaptoethanol (M7522; Sigma-Aldrich) by heating at 95°C for 5 minutes. Proteins were resolved in 4% to 12% gradient SDS-PAGE in NuPAGE Bis-Tris Precast Gels (Life Technologies) with BlueStar PLUS Prestained protein marker (MWPO4 Nippon Genetics Europe, Düren, Germany). Proteins were then transferred onto a 0.45-μm polyvinylidene difluoride membrane (IEVH85R Immobilon-E; Millipore, Guyancourt, France), and bands were blocked with 5% nonfat dry milk with PBS-T (DPBS with 0.1% Tween-20) and stained with primary antibodies (Table 4) overnight at 4°C under agitation diluted as described below. For band detection, horseradish peroxidase—coupled secondary anti-rabbit (7074; Cell Signaling Technology, Leiden, Pays-Bas) or anti-mouse (NA931; GE Healthcare Europe, Freiburg, Germany) antibodies were added for 1 hour at room temperature under agitation before ECL substrate (Immobilon Western Chemiluminescent HRP Substrate WBKLS0500, or Immobilon Forte WBULF0500, both from Millipore). Protein bands were visualized using ChemiDoc Imaging System (Bio-Rad Laboratories, Hercules, CA), and bands were quantified using Image Lab Software (Bio-Rad Laboratories). Staining intensities were normalized on GAPDH staining.

Statistics and Reproducibility

Statistical analyses were done using GraphPad Prism software version 9.3.1. Data are presented as means ± SD, or as ratio (ATT versus vehicle, Pb-PRL versus WT) as indicated.
Wilcoxon test was used for urodynamic tests comparing the same mice before and after treatment, otherwise U-test or analysis of variance was used for other mouse data, and t-test or analysis of variance was used for BPH-1 and WPMY-1 cell data.

Results

Pb-PRL Mice Exhibit Urodynamic Disturbances

BPH hallmarks harbored by Pb-PRL mice have been widely documented15,17--22 and are summarized in Supplemental Figure S1. To further assess the relevance of Pb-PRL mice as a BPH model, various urodynamic parameters of Pb-PRL versus WT mice were analyzed using metabolic cages (Supplemental Figure S2A). As expected, values for voiding frequency, urine output, and water intake were greater in the dark than in the light period for both genotypes (P < 0.05, two-way analysis of variance). No genotype-related difference in any parameters could be observed in the light period (Figure 1, A–D, and Supplemental Figure S2, B and C). In the dark period, voiding frequency was significantly higher in Pb-PRL than in WT mice 5.29 ± 1.93 vs. 3.27 ± 1.49, P = 0.0010 (Figure 1A), whereas urine volume per voiding (140.8 ± 68.4 μL vs. 280.3 ± 162.7 μL, P = 0.0080) (Figure 1B) and urinary flow rate (16.2 ± 5.5 μL/second vs. 25.9 ± 12.5 μL/second, P = 0.0239) (Figure 1C) were concomitantly decreased in Pb-PRL mice. The urine output (diuresis) (Figure 1D), mean micturition duration, and water intake (Supplemental Figure S2, B and C) were similar for both genotypes. Together, these experiments indicate that Pb-PRL mice exhibit urodynamic disturbances reminiscent of LUTS observed in patients with BPH.

Single-Cell Analysis of Pb-PRL Mouse Prostates

To address the cellular and molecular alterations underlying the various BPH hallmarks of Pb-PRL mice, droplet-based scRNAseq profiles were collected from 24,721 live cells originating the four prostate lobes of four Pb-PRL mice (Table 1). These data were analyzed together with publicly available data sets of three WT mouse prostates from which urethral cells had been excluded.30 Unsupervised clustering segregated 22 distinct cell subsets that were annotated using marker genes validated for the mouse prostate (Supplemental Figure S3). These markers identified eight epithelial, six immune, five stromal, one endothelial, one seminal vesicle, and one proliferating cell clusters (Figure 1, E–G, and Supplemental Figure S4A).

Pathway enrichment analysis in epithelial, immune, and stromal cell compartments identified TNFα/NFκB, hypoxia, and apoptosis/cell death in the top 20 pathways activated in all of them (Supplemental Figure S5 and Supplemental Table S2). Compartment-specific pathways included cell differentiation (development, epithelial-to-mesenchymal transition, wound healing) in the epithelium, and inflammatory pathways in stromal (inflammatory response, IL-6/STAT3) and immune (inflammatory response, IL-2/STAT5, interferon) cell compartments. In agreement with histopathological characterizations,15,21 immune cells infiltrating Pb-PRL mouse prostates primarily involved T lymphocytes and macrophages, whereas the latter dominated the rare prostate-resident immune cells found in WT mouse prostates (Figure 1H). In the stroma, the main alterations in Pb-PRL mice were the decreased ratio of the prostate-fibroblast cluster to the benefit of myofibroblasts (in agreement with increased Picrosirius Red staining, Supplemental Figure S1F), and of a cluster of prostate fibroblasts enriched in Egr1, Junb, and Sox10. This cluster was named BPH-Fib because it was virtually absent in healthy prostate (Figure 1I).

The epithelial compartment of Pb-PRL prostates was more strongly affected (Figure 1, F, G, and J). The basal cell compartment was composed of three clusters: Basal 1, Basal 2, and Basal-Int. Basal 1 and Basal 2 clusters were transcriptionally similar and were similarly prevalent in both genotypes. The third cluster, referred to as Basal-Int (for “intermediate” between the basal and luminal lineages), was virtually absent in healthy prostates but represented approximately 20% of the Pb-PRL prostate epithelium (Figure 1J). This cluster was characterized by high expression of Krt13, a marker of Hillock cells in the human prostate,29 and Tacstd2 (encoding TROP2) and Ly6a (encoding SCA-1), two typical stemness genes. The luminal secretory cell compartment was markedly reduced in Pb-PRL mice (from >60% to <20%) to the benefit of two clusters of nonsecretory luminal cells referred to as LSCmed and luminal-intermediate (Lum-Int) (Figure 1J, and Supplemental Figure S4B). Typical markers of LSCmed cells included Krt4, Krt7, Clu, and Psca,23 whereas Lum-Int cells were characterized by high levels of Pate6, Wdch2, and Timp1 and low levels of secretory luminal cell markers (Figure 1F).

Overall, this scRNAseq analysis indicated that the epithelium of Pb-PRL prostate is much more heterogeneous than that of healthy prostate, reminiscent of that observed in the human prostate from old donors, including BPH, versus young donors.30,31 Therefore, the next study was focused on the epithelial compartment.

Characterization of BPH-Associated Epithelial Cell Clusters

LSCmed defines a population of SCA-1+ luminal cells that can be enriched from mouse prostate by SCA-1+/CD49f cell sorting (Figure 2A).23,24 This population largely corresponded to the luminal progenitor cluster identified by scRNAseq, from which a common signature of 15 genes was established27,28 (Supplemental Table S1). In WT mice, this LSCmed/luminal progenitor signature marked a small scRNAseq cluster corresponding to the approximately 5% of epithelial cells enriched by cell sorting (Figure 2A) and was logically named LSCmed...
Figure 1 Pb-PRL mice exhibit marked alteration of urodynamic parameters and of prostate cell composition.

A–D: Comparison of various urodynamic parameters (as indicated) between 15 wild-type (WT) and 17 Pb-PRL mice measured during light and dark periods. Error bars represent standard deviations.

E–J: Single-cell RNA sequencing analyses of WT and Pb-PRL mouse prostates.

E: UMAP of 51,307 single cells from the mouse data set after quality control. A resolution of 1.4 allows the identification of 22 cell types annotated based on the expression of 55 prostate genes, as shown in Supplemental Figure S3.

F: Dot plot of the expression of the specific markers used to annotate the epithelial cell populations of the mouse data set.

G: UMAP representation colored by the annotated cell type and split by the genotype (WT and Pb-PRL) (individual mice shown in Supplemental Figure S4A).

H–J: Proportion of the cell type within the immune (H), fibroblast (I), and epithelial (J) cell populations between WT and Pb-PRL mice (bars color-coded according to panel E). Luminal-AD (luminal anterior/dorsal), Luminal-L (luminal lateral), and Luminal-V (luminal ventral) identify secretory luminal cells of the different lobes.

Dos Santos et al.

ajp.amjpathol.org - The American Journal of Pathology
In Pb-PRL prostates, the luminal progenitor signature marked a second group of cells identified as part of the LSC_{med} cluster (Figure 2B). In addition, there was a global trend for the enrichment of LSC_{med} genes in contiguous Lum-Int and Basal-Int clusters (Figure 2, B and C). Enrichment analysis of the top 25 genes of these two clusters in the transcriptomes of FACS-sorted LSC_{med} and basal cell populations (BioStudies, https://www.ebi.ac.uk/biostudies/studies/S-BSST1128, last accessed September 13, 2023) suggested that, in Pb-PRL mice, Basal-Int cells preferentially segregated with basal cells, whereas Lum-Int cells segregated with both sorted LSC_{med} and basal cells (Figure 2, D and E). These data support that the enrichment of basal and LSC_{med} cells observed in sorting profiles of Pb-PRL prostates (Figure 2A) is due, at least in part, to the cosegregation of disease-associated Basal-Int and Lum-Int cells.

In agreement with former reports, the mouse luminal progenitor signature was enriched in Club and Hillock cells of the human prostate, especially in BPH-associated Club cells (Figure 3A and Supplemental Figure S6).

Figure 2 Cell sorting-scRNAseq correspondence of BPH-associated epithelial cell populations. A: Representative cell sorting profile of wild-type (WT) and Pb-PRL mouse prostates using CD49f and SCA-1 cell markers. B and C: LSC_{med} cell location in the epithelial clusters for both WT and Pb-PRL genotypes shown as UMAP (B) and violin plots (C). Genes of the signature are listed in Supplemental Table S1. D and E: Enrichment of the top 25 genes of Basal-Int and Lum-Int clusters in the transcriptome of LSC_{med} (D) and basal (E) cells sorted from WT and Pb-PRL mice, as indicated. n = 3 WT mice (A–E); n = 3 (A, D, and E) and n = 2 (B and C) Pb-PRL mice. AD, anterior/dorsal; Int, intermediate; L, lateral; V, ventral.
Reciprocally, the human Hillock and Club signatures (Supplemental Table S1) were enriched in mouse LSC^{med} cells (Figure 3, B–E). More globally, both signatures were enriched in Pb-PRL prostates, on the basal side (including Basal-Int) for the Hillock signature (Figure 3, C and E), and on the luminal side (including Lum-Int) for the Club signature (Figure 3, B and D). Together, these data indicate that Pb-PRL mouse prostates are enriched in features of cells that have been associated with human prostate aging and pathogenesis.30,31

BPH-Associated Epithelial Clusters Overlap Altered Androgen and STAT5 Signaling

The overlap of the LSC^{med} signature with the cell continuum linking basal and luminal cell clusters in Pb-PRL prostates (Figure 2B and Figure 4A) led to the investigation of possible trajectories between them. As shown in Figure 4B (whole prostate shown in Supplemental Figure S7A), scVelo analysis proposed trajectories connecting secretory luminal cells to the LSC^{med} cluster, directly and/or through Lum-Int cells.

Figure 3 Mouse–human correspondence of BPH-associated epithelial cell populations. A: Violin plot of the epithelial compartment of human prostate (healthy and BPH) showing an enrichment of the LSC^{med} score in Hillock and Club cell clusters. B–E: Reciprocally, the Club (B and D) and Hillock (C and E) signatures were found to be enriched in LSC^{med}-positive cells of the Pb-PRL mouse prostate. Genes of the signatures are listed in Supplemental Table S1. AD, anterior/dorsal; Int, intermediate; L, lateral; V, ventral.
Figure 4 BPH-associated epithelial cell clusters overlap with altered androgen and STAT5 signaling. A: LSCmed signature score in the epithelium of the mouse data set. B: The velocity vector field displayed as streamlines of the epithelial population in mice, showing the central role of LSCmed-positive cells in the epithelial plasticity. C: Up-regulation of AR signaling (bottom) is found in luminal cells, whereas AR down-regulation (top) characterizes basal cells (all mice). D: Same as in C shown per genotype (WT and Pb-PRL). E: Heatmap of the pseudo-bulk expression of the regulators of the androgen genes. Hierarchical clustering of the clusters was computed with a Pearson’s correlation as a distance, and the genes were grouped into UP and DOWN based on AR-mediated regulation of their transcription. F and G: Level of STAT5 signaling in the different genotypes, visualized as UMAP (F) and violin plot (G) in wild-type (WT) versus Pb-PRL mice. Genes of the signatures are listed in Supplemental Table S1. n = 7 mice (A–C and E); n = 3 WT mice (D, F, and G); n = 2 Pb-PRL mice (D, F, and G). AD, anterior/dorsal; Int, intermediate; L, lateral; V, ventral.
In the basal compartment, the Basal-Int cluster was connected to the LSCmed compartment as well as to Basal 1 and Basal 2 clusters. This analysis indicates that cells enriched in LSCmed genes may act as a central hub integrating various transitional cell states in diseased Pb-PRL prostates. This behavior was also suggested by the gradient of expression of cluster-specific genes indicated in Supplemental Figure S7B.

Androgen signaling down-regulation induces prostatic epithelial cell plasticity in WT mice. In line with this, expression of Ar and 5α-reductase was decreased in Pb-PRL prostate tissue (Supplemental Figure S8, A–C). Androgens regulate target genes both positively and negatively. Both signatures expectedly displayed a mirror image with up-regulated genes primarily expressed in the luminal cell compartment, and down-regulated genes primarily expressed in the basal compartment (Figure 4C and D). LSCmed cells have intrinsically low androgen signaling. Lum-Int cells exhibited a pattern halfway between LSCmed and luminal cells (Figure 4E), further supporting their constituting a hinge in the epithelial cell continuum of Pb-PRL prostates. In addition to these cell-specific profiles, androgen signaling was globally decreased in Pb-PRL compared with WT prostate epithelium as highlighted by the higher level of AR-repressed genes in Pb-PRL versus WT prostates (Supplemental Figure S8D). This was due not only to the enrichment in low androgen-signaling cells (Basal-Int, LSCmed, Lum-Int) at the expense of high androgen-signaling cells (secretory luminal), but also to reduced androgen signaling in cognate cell compartments, eg, basal and LSCmed clusters (Figure 4D and Supplemental Figure S8D).

Cell-autonomous JAK/STAT signaling also regulates prostatic epithelial cell plasticity in inflammatory context. STAT5 is the canonical PRLR signaling pathway in the prostate. In WT mice, the PRLR reactome (including Prlr) was highly expressed in the luminal epithelium, but in the absence of local PRL expression, no STAT5 signaling was detected (Figure 4, F and G, and Supplemental Figure S9, A and D). In Pb-PRL mice, PRLR/STAT5 signaling is triggered in the luminal epithelium by locally produced PRL (Figure 4F). The shift of PRLR reactome expression from luminal cells in WT prostates, to Lum-Int cells in Pb-PRL mice (Supplemental Figure S9, B and C), suggests a functional role of PRLR/STAT5 signaling in epithelial cell reprogramming in this BPH model. Of note, based on Prlr and PRLR reactome expression pattern, STAT5 signaling detected in the basal compartment in both genotypes is most likely triggered by other cytokines than PRL.

Together, the almost superimposable pattern of LSCmed, AR-repressed and STAT5 signatures strongly suggests the contribution of these two pathways to the emergence of intermediate/LSCmed cells in Pb-PRL prostates.

Pb-PRL Mice Are Responsive to Antioxidant Therapy

Similar to that in human BPH, Pb-PRL mouse prostates displayed features of oxidative stress as the level of expression of antioxidant enzymes was uniformly decreased in Pb-PRL mice compared to WT animals (Figure 5, A and H). This was confirmed by quantitative RT-PCR analysis of key antioxidant enzymes including the chief transcription factor Nrf2, Gpx4, Sod1, Sod2, and Cat (Figure 5B). Thus, the Pb-PRL model was appropriate to investigate the potential benefit of antioxidant therapy in BPH.

ATT, a drug marketed in several countries for its choleretic and syalogogic properties, is a specific inhibitor of reactive oxygen species (ROS) production at the 1q site of the mitochondrial respiratory chain. As such, it is assumed to preserve mitochondria activity and integrity in contrast to unspecific antioxidant molecules acting as ROS scavenger. As shown in Figure 5C, 1 month of daily ATT treatment of Pb-PRL mice led to a significant decrease of prostate weight, but not of urinary bladder and urethral tissue weight (Supplemental Figure S10B). Compared with pretreatment values, chronic antioxidant treatment resulted, in the dark period, in significant reduction in voiding frequency and concomitant increase in urine volume per voiding, and in a trend (8 of 11 mice) to increased urinary flow rate (Figure 5, D–G). ATT had no effect on micturition duration and urine output, and vehicle failed to affect any parameter (Supplemental Figure S10B). Together, these data demonstrate the therapeutic benefit of antioxidant therapy in this model.

The histology of Pb-PRL prostates did not show any sign of marked alteration after ATT treatment (Supplemental Figure S11A). Also, STAT5 and AR signaling were not much affected by the treatment. At best, nuclear pSTAT5 immunostaining was slightly decreased in the epithelium of anterior and dorsal lobes (ie, the two lobes where it is the most highly activated in Pb-PRL mouse prostates) but it remained at such a high level that the STAT5 signaling signature was not impacted (Supplemental Figure S11, B–D). Similarly, both up and down AR signaling signatures were unchanged. In agreement, nuclear AR immunostaining in the epithelium, earlier shown to be of lower intensity in Pb-PRL versus WT mice, was unaffected by ATT treatment (Supplemental Figure S11, E–G). Single-cell RNAseq analysis of prostates from vehicle- versus ATT-treated Pb-PRL mice showed only mild changes in cluster distribution, at best a slight decrease in the prevalence of disease-associated clusters Lum-Int, Basal-Int, and myofibroblasts could be observed (Supplemental Figure S12). Noticeably, the expression pattern of antioxidant enzymes was partially restored under ATT treatment (Figure 5H), including in epithelial cells.

ATT Reduces Proliferation and Mitochondrial Metabolism of BPH-1 Cells

BPH-1 cell line was used to investigate the effect of ATT on BPH epithelial cells. Based on its keratin profile, this cell line has been described as luminal. Its androgen insensitivity conjugated to the expression of typical luminal progenitor cell markers such as KRT7.
Figure 5 Pb-PRL mice are responsive to anethol trithionine (ATT) therapy. A: The comparison of the expression of the antioxidative enzymes between wild-type (WT) and Pb-PRL mice highlights a decrease in overall expression in Pb-PRL mice. B: Quantitative RT-PCR analysis of selected antioxidative enzymes (Gpx4, Sod1, Sod2, Cat) and transcription factor (Nrf2) expressed in ventral prostates of Pb-PRL versus WT untreated mice (data normalized to WT). Error bars represent standard deviations. C: Prostate (mg)/mouse (g) weight ratio in Pb-PRL mice after 1-month ATT versus vehicle treatment. Error bars represent standard deviations. D–G: Evolution of various urodynamic parameters (as indicated) of Pb-PRL mice measured during the dark period before (baseline) versus after 1-month ATT treatment. See Supplemental Figure S10 for vehicle treatment. Dotted line in D represents averaged voiding frequency in 6-month-old WT mice. H: UMAP representation of antioxidative enzyme expression split by genotype and treatment (WT, Pb-PRL Vehicle, and Pb-PRL ATT). Genes of the antioxidant signature are listed in Supplemental Table S1. n = 3 WT mice (A and H); n = 2 Pb-PRL mice (A); n = 4 WT mice (B); n = 4 Pb-PRL mice (B); n = 2 Pb-PRL vehicle-treated mice (H); n = 2 Pb-PRL ATT-treated mice (H). *P < 0.05 by t-test (B) or U-test (C), **P < 0.01 by Wilcoxon test (D–G). ns, not significant.
and KRT4 (Figure 6A), suggests that it can be used as a model of LSCmed/Club-like cells. After 60 hours of ATT treatment, a decrease in cell confluence was observed by IncuCyte analysis without alteration of cell viability (Figure 6, B and C, and Supplemental Figure S13A). This effect was concomitant to increase in p21 protein levels (Figure 6, D and E) and persisted over 3 weeks of chronic ATT treatment (Figure 6F and Supplemental Figure S13B).

ATT treatment decreases mitochondrial ROS production in isolated rat heart mitochondria.56 In BPH-1 cells, ATT reduced the level of malondialdehyde, a marker of oxidative stress (Figure 6, D and G). The authors hypothesized that the reduction of cell growth under ATT treatment could be related to cell metabolism impairment. After 72 hours of treatment, a decrease in mitochondrial activity measured by flow cytometry was observed (Figure 6H). This was confirmed by a significant decrease in mitochondrial respiration measured by OCR using Seahorse BioAnalyser: basal mitochondrial respiration, maximal respiration, and ATP production were all down-regulated (Figure 6, I and J). ATT treatment affected neither mitochondrial membrane potential nor mitochondrial mass (Figure 6, K and L). BPH-1 cells did not compensate the decrease in mitochondrial activity by up-regulating glycolysis, as the extracellular acidification rate remained similar between control and treated cells (Figure 6, M and N). The lack of glycolysis alteration by ATT treatment was also confirmed by measuring the extracellular lactate/glucose concentration ratio (Figure 6O).

Similar assays performed using the human myofibroblastic WPMY-1 cell line showed that ATT also affected the mitochondrial respiration (OCR) in this cell type, with a significant effect on mitochondrial membrane potential and a trend toward reduction of mitochondrial mass and activity (Supplemental Figure S14, A–E). ATT-induced accumulation of lactate in culture medium was observed from 48 hours of treatment (Supplemental Figure S14F), which may explain why it was not observed in short-term seahorse experiments performed in fresh medium (Supplemental Figure S14, G and H). These data may suggest mild up-regulation of glycolysis under ATT, which could explain the absence of impact on WPMY-1 cell proliferation (Supplemental Figure S14, I and J).

Together, these data suggest that ATT affects mitochondrial metabolism in both epithelial and myofibroblastic prostate cell lines, with different outcomes on cell proliferation depending on compensatory up-regulation of glycolysis.

ATT Interferes with Progenitor Hallmarks of Epithelial Cells

Despite relatively mild transcriptomic effects, short-term (72 hours) treatment of BPH-1 cells with ATT affected various disease- and metabolism-related functions including free radical scavenging (Supplemental Figure S15, A–C). Strikingly, the most affected gene products included markers of LSCmed/Club/Hillock cells (eg, ALDH1A3, PPAR, KRT13)23,29,58,59 (Supplemental Figure S15D). In the prostate epithelium, PPARγ was mainly expressed in luminal progenitor-like cells (mouse LSCmed and human Club/Hillock) (Figure 7A and Supplemental Figure S15, E and F), and mouse studies have suggested its involvement in epithelial cell differentiation.60 PPARγ expression in Club cells was increased in BPH versus healthy human prostate (Supplemental Figure S15F). The ATT-induced reduction of PPAR expression in BPH-1 cells was confirmed by quantitative RT-PCR (Figure 7B) and immunoblot (PPARγ1 isoform), and the down-regulation of its transcriptomic target FABP4 assessed the functional down-regulation of this pathway by ATT (Figure 7, C and D).

ALDH1A3 is tightly correlated to cell stemness,61 and high ALDH activity is a functional marker of mouse prostate stem/progenitor cells.62 In the human prostate, ALDH1A3 is expressed in luminal and Club/Hillock cells, and in the mouse, it was mostly expressed in disease-associated Basal-Int, LSCmed, and Lum-Int clusters (Figure 7E, and Supplemental Figure S15, E and F). In

Figure 6 Anethol trithione (ATT) reduces oxidative stress, cell proliferation, and mitochondrial metabolism in BPH-1 cells. A: mRNA expression of the LSCmed cell marker KRT74 measured by quantitative RT-PCR in three benign human prostatic epithelial cell lines: BPH-1 derived from a BPH patient, and PNT2 and RWPE1 derived from healthy donors. B: Mean cell confluence area in BPH-1 cells treated with 10 µmol/L ATT versus dimethyl sulfoxide (DMSO), normalized to day 0. Scans were acquired every hour for 72 hours using IncuCyte (see Supplemental Figure S11). C: Percentage of live BPH-1 cells treated for 72 hours with 10 µmol/L ATT versus DMSO measured by flow cytometry using DAPI. D: Immunoblot of P21, malondialdehyde (MDA), and for each, of GAPDH, after 24 hours, 48 hours, and 72 hours of treatment with 10 µmol/L ATT versus DMSO. The dotted line separates DMSO and ATT samples loaded on the same gel. E: Quantification of P21 versus GAPDH proteins shown in D, F: BPH-1 cell proliferation (Mali assay) for 7, 14, and 21 days of chronic treatment with 10 µmol/L ATT versus DMSO (treatment renewed every new day). G: Quantification of malondialdehyde versus GAPDH proteins shown in D, H, K, and L: Relative median fluorescence intensity (MFI) measured by flow cytometry of CMXRos (H), TMTR (K) and Mitotracker Green (L) probes in BPH-1 cells after 72 hours of ATT at 10 µmol/L treatment. Each experiment is normalized to DMSO, and CMX-ROS MFI is also normalized to Mitotracker Green MFI. I: Representative BPH-1 cell O2 consumption rate (OCR) after 72 hours of ATT (10 µmol/L) treatment measured by Seahorse. J: Quantification of OCR in BPH-1 cells after 72 hours of ATT (10 µmol/L) treatment, each point represents the mean OCR measured for 4 to 8 technical replicates and the maximal respiration is normalized to 100%. M: Representative BPH-1 cell extracellular acidification rate (ECAR) after 72 hours of ATT (10 µmol/L) treatment measured by Seahorse. Cells were incubated in fresh ATT-free Seahorse medium 1 hour before recording (TO). N: Quantification of ECAR in BPH-1 cells after 72 hours ATT (10 µmol/L) treatment, each point represent the mean of technical replicates. O: Ratio of extracellular lactate versus glucose concentration after 30 minutes, 2 hours, 24 hours, 48 hours, and 72 hours of ATT (10 µmol/L) treatment (n = 4). Each lactate and glucose concentration is normalized to the extracellular protein concentration. Error bars represent standard deviations, n = 3 experiments (A, B, D, and J); n = 4 experiments (C, H, K, L, and O); n = 4 to 8 technical replicates (J). *P < 0.05, **P < 0.01, and ***P < 0.001) by t-test (A, C, H, and L), one-way (K) or two-way analysis of variance (B, E, F, G, J, N, and O). ns, not significant.
Figure 7 Anethol trithione (ATT) interferes with progenitor hallmarks of epithelial cells. A–D: Analysis of PPARg. A: Expression of Pparg in the epithelial subset of Pb-PRL vehicle mice. B: Expression of PPARg mRNA measured by quantitative RT-PCR in BPH-1 cells treated for 72 hours with 10 μmol/L ATT versus dimethyl sulfoxide (DMSO). C: Immunoblot of PPARγ1, FABP4, and GAPDH proteins after 24 hours, 48 hours, and 72 hours of treatment with 10 μmol/L ATT versus DMSO (three independent samples shown). The dotted line separates DMSO and ATT samples loaded on the same gel. D: Quantification of PPARγ1/GAPDH and FABP4/GAPDH ratios normalized to the 24-hour DMSO condition. E–H: Analysis of ALDH1A3. E: Expression of Aldh1a3 in the epithelial subset of Pb-PRL vehicle mice. F: Expression of ALDH1A3 mRNA measured by quantitative RT-PCR in BPH-1 cells treated for 72 hours with 10 μmol/L ATT versus DMSO. G: Representative experiment showing ALDH activity in BPH-1 cells after 72 hours of ATT versus DMSO treatment by flow cytometry using Aldefluor kit. DEAB is an ALDH activity inhibitor used to delineate the ALDH activity positive gate named Aldefluor. H: Percentage of Aldefluor-positive BPH-1 cells after 72 hours of treatment. Each point represents the mean of technical replicates. I–K: Organoid assay. I: Representative images of organoids derived from basal and LSCmed cell sorted from three non-treated Pb-PRL mice. Images were taken by light inverted microscope EVOS 5000 after 10-day treatment with ATT or DMSO. Treatments were started 1 day after the cell seeding and renewed with fresh medium, every other day for 10 days. Quantification of the number of organoids (J) and organoid size (K) is shown. Each point in K represents a single organoid. Errors bars represent standard deviations. n = 2 mice (A and E); n = 3 mice (I); n = 3 experiments (B, F, and I); n = 4 technical replicates (H); n = 4 mice (B and F); n = 6 to 8 technical replicates (J). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 by t-test (B, F, and J), U-test (K), or two-way analysis of variance (D and H). Scale bar = 800 μm (I). Original magnification, ×10 (J), ns, not significant.
contrast to ALDH1A3 expression measured by quantitative RT-PCR (Figure 7F), treatment of BPH-1 cells by ATT drastically affected ALDH enzymatic activity as assessed in the Aldefluor assay (Figure 7, G and H).

The alteration of PPARγ and ALDH pathways suggested that ATT may interfere with the properties of progenitor-like cells. To address this hypothesis, organoids were generated from basal and LSCmed cells FACS-enriched from Pb-PRL prostates (Figure 7I). Although ATT treatment had mild (basal) or inconsistent (LSCmed) effect on organoid forming capacity (Figure 7J), a robust and highly significant inhibitory effect on organoid growth was noticed for both cell types (Figure 7K). Together, these data indicate that ATT impairs the growth of BPH-associated progenitor-like epithelial cells.

Discussion

Emerging evidence indicates that the prostate epithelium of the aging male, including the BPH condition, is progressively populated with luminal cells displaying low androgen signaling. Referred to as TROP2+ luminal cells in the mouse, and CD38low luminal cells in humans, these cells largely overlap with LSCmed cells (for a review, see Baures et al32). As a consequence of their tolerance to low androgen conditions, these cells presumably contribute to therapeutic resistance as supported by the increased prevalence of LSCmed cells in castrated mice, and of Club-like cells in 5-ARI-treated human BPH. In both species, luminal cell reprograming into LSCmed/Club-like cells triggered by androgen signaling manipulation has been proposed as the underlying mechanism. Is cell plasticity also driving LSCmed-like cell amplification during BPH pathogenesis? The identification of several intermediate cell states between luminal and basal lineages in Pb-PRL mouse prostates supports this hypothesis. In these mice, intraprostatic androgen signaling was decreased (this study) while STAT5 knock-down in prostatic luminal cells of Pb-PRL mice reduces luminal cell depletion as well as other BPH hallmarks. At the single-cell level, the present study showed that LSCmed, STAT5, and AR-repressed gene signatures almost perfectly overlap, suggesting functional connections. Whether these pathways are also involved in human BPH pathogenesis is at present unknown. Notably, circulating testosterone levels decline with age when BPH and Club cell prevalence increases. Also, STAT5 signaling triggered by the inflammatory cytokine CCL5 has been proposed to promote BPH epithelial cell proliferation in low-androgen conditions. Further studies are required to decipher the molecular circuitry integrating these pathways in BPH, including potential reciprocal regulation.

How could LSCmed/Club-like cells contribute to BPH pathogenesis? Beyond their survival advantage over luminal cells in low-androgen conditions, LSCmed-like cells are also more proliferative, exhibit higher organoid-forming capacity, and form larger prostaspheres and organoids. These properties suggest their contribution to hyperplasia and hypertrophy of the periurethral (transition) prostate area ultimately leading to compression of the urethra. In this context, whereas 5-ARI treatment appears to favor Club-like cell expansion by cell plasticity, the identification of alternative therapeutic strategies targeting these cells (or luminal cell reprogramming) seems appropriate. In this study, the antioxidant compound ATT prevented the growth of organoids generated from Pb-PRL LSCmed and basal cells, ie, the two epithelial cell compartments amplified in cell sorting (Figure 2A), as well as the proliferation of LSCmed-like human BPH-1 cells. These growth-inhibitory effects may result from reduced mitochondrial metabolism under ATT. Based on altered ALDH activity of BPH-1 cells and organoid-forming capacity of Pb-PRL basal cells, ATT may also affect the progenitor properties of BPH-associated cells. Importantly, 1-month antioxidant therapy with ATT reduced prostate weight and partly reversed the urodynamic disturbances exhibited by Pb-PRL mice. This is to our knowledge the first report showing that a drug affecting the growth of androgen-independent LSCmed-like cells also improves BPH symptoms in vivo. Given the wide panel of cells presumably affected by ATT, alternative mechanisms involving other cell compartments may also contribute to this therapeutic benefit.

Other antioxidant compounds have been recently reported as candidates for BPH therapy. These include mitoquinone, a mitochondria-targeted drug, and apocynin, an NADPH oxidase inhibitor. Both were shown to reduce cell proliferation and inflammatory hallmarks, and increase prostate weight in a rat model of testosterone-induced prostate enlargement. No data, however, were provided on urodynamic parameters. Both compounds inhibited AR signaling, indicating that long-term therapy could ultimately increase the prevalence of androgen-independent Club-like cells by luminal cell plasticity, as observed with 5-ARI. Such an outcome is not expected with ATT treatment. As mentioned, ATT has been used for decades as a treatment for xerostomia, and is well tolerated. Based on those data, we tentatively propose the following steps to validate ATT as a treatment for BPH. First, retrospective cohorts of patients treated with ATT for xerostomia should be analyzed to address the expected lower prevalence of urinary symptoms compared with the general population. This preliminary work will allow collecting specific data on these patients, including hydration habits (considering their xerostomia), as hydration can affect urinary symptoms. Second, a clinical trial should be developed to evaluate the efficacy of ATT in BPH treatment. Treatment-naive patients with symptomatic BPH should be randomized double-blind in two arms (ATT versus placebo), with improvement of urinary symptoms (International Prostate Symptom Score) as the primary endpoint. If ATT efficacy can be demonstrated, a
comparative study involving ATT and α-blockers, the most widely used treatment worldwide, could then be proposed. As reported in former reference trials of BPH treatments,5,6 such a study will benefit from long-term follow-up, including International Prostate Symptom Score and flow rate evaluation at 1 and 4 years. Secondary endpoints should include sexual side effects and patient satisfaction. A non-inferiority trial compared with α-blockers may also be considered. In particular, it would be interesting to assess whether ATT could counteract the exhaustion of effect observed with long-term 5-ARI treatment, which we hypothesize to be causally related to the luminal-to-Club-like cell transition induced by the drug.32 If so, such a drug combination may delay surgery in case of failure of 5-ARI treatment, with important socioeconomical impact.

The current study faces some limitations. One major issue in the BPH field is the paucity of experimental models to address disease mechanisms and drug efficacy. BPH-1 is to our knowledge the only prostatic epithelial cell line generated from a BPH patient.57 However, although its LS Cmed-like features are appealing, the intrinsic features of this T antigen-immortalized cell line cell call for confirmation of experimental findings in more relevant models, eg, organoids generated from primary BPH cells. This issue is even more challenging for stromal cells, as we are not aware of any fibroblastic model generated from acknowledged BPH. Therefore, the healthy, T antigen—immortalized WPMY-1 cell line was used to address the effects of ATT on myofibroblastic cells. Regarding in vivo studies, in contrast to prostate cancer for which the majority of preclinical research worldwide involves a few mouse models carrying the most frequent genetic alterations observed in patients,50 there is currently no reference model for BPH. Indeed, many animal models of BPH models are difficult to handle, or even considered to be not representative of the human condition.33 For example, although the above-mentioned testosterone-induced prostate enlargement rat model shows increased voiding frequency and reduced volume per voiding, it is known that in humans androgen levels decline in the elderly, when BPH prevalence increases.71 In this context, former reports have shown that the histopathological alterations of Pb-PRL mouse prostates mirror human BPH.15,16–22 This study provides additional evidence supporting the relevance of this mouse model: i) its micturition characteristics recapitulate the symptoms of urinary hesitancy and frequency seen in BPH patients; ii) their prostates present increased vulnerability to oxidative stress, as proposed in the human disease; and iii) their epithelium is heterogeneous and contains various Club/Hillock-like cell states exhibiting low androgen signaling, reminiscent of what is observed in the pathogenesis and therapeutic resistance of human BPH. Thus, although the involvement of PRL/STAT5 in human BPH remains to be established,17 the Pb-PRL mouse is a useful preclinical BPH model to investigate the mechanisms contributing to disease development, including cell plasticity, and to challenge new therapeutic strategies as recently shown for anti-inflammatory compounds,32 and in this study, for antioxidant therapy.

Acknowledgments

We thank the personnel of the technological core facilities including animal housing (Sarah Nadjah, Emilie Panafieu, Pierre Chérel, Olivier Claude), cytometry (Jérôme Mégret, Corinne Cordier), and histology (Sophie Berissi) of the SFR Necké (US24/UAR3633), and Sebastien Jacques from the Genom’IC facility of Cochin institute; Dr. Lucila Sackmann Sala for sharing bulk transcriptomic data of Pb-PRL mouse prostate epithelial cells; and Dr. Mitsuharu Yoshiyama for help with urodynamic studies and for critical reading of the manuscript.

Author Contributions

Disclosure Statement

O.P. holds a patent on ATT repositioning for BPH treatment. He participated in initial study design, but had no role in data collection, analysis, and interpretation, or writing of the manuscript.

Supplemental Data

Supplemental material for this article can be found at http://doi.org/10.1016/j.ajpath.2023.09.010.

References

70. Parisotto M, Metzger D: Genetically engineered mouse models of prostate cancer. Mol Oncol 2013, 7:190–205