Exogenous Transforming Growth Factor-β1 and Its Mimic Heligmosomoides polygyrus TGM Attenuate the Heart’s Inflammatory Response to Ischemic Injury and Reduce Mature Scar Size

Rachael E. Redgrave,* Esha Singh,* Simon Tual-Chalot,* Catherine Park,* Darroch Hall,* Karim Bennaceur,† Danielle J. Smyth,‡ Rick M. Maizels,§ Ioakim Spyridopoulos,∥ and Helen M. Arthur*

From the Faculty of Medical Sciences,* Biosciences Institute, Newcastle University, Newcastle; Faculty of Medical Sciences,† Translational Research Institute, Newcastle University, Newcastle; and Wellcome Centre for Integrative Parasitology,∥ School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom

Successful and timely coronary reperfusion after acute ST-elevation myocardial infarction (STEMI) is standard therapy to salvage ischemic heart muscle. However, subsequent inflammatory responses within the infarct lead to further loss of viable myocardium. Transforming growth factor (TGF)-β1 is a potent anti-inflammatory cytokine released endogenously in response to infection or tissue injury, and the goal of this study was to investigate its protective effects when given exogenously after MI. In patients with STEMI, we observed a significant correlation (P = 0.003) between higher circulating TGF-β1 levels at 24 hours after MI and a reduction in infarct size during the following 3 months, suggesting that an early increase in circulating TGF-β1 is protective. Using a mouse model of cardiac ischemia reperfusion, we demonstrate that exogenous TGF-β1 delivered in the acute care setting has multiple benefits. At 24 hours after reperfusion, exogenous TGF-β1 leads to a significantly smaller infarct size (30% reduction, P = 0.025), reduced inflammatory infiltrate (28% reduction, P = 0.015), lower intracardiac expression of the inflammatory cytokines IL-1β and chemokine (C-C motif) ligand 2 (50% reduction, P = 0.032 and 0.0004, respectively), and reduced scar size at 4 weeks (21% reduction, P = 0.015). Furthermore, delivery of an equivalent dose of Heligmosomoides polygyrus TGM, a low-fibrogenic mimic of TGF-β1 secreted by a helminth parasite to evade immune rejection, has an almost identical protective effect on injured mouse hearts. Finally, using a genetic approach, we found that this benefit is mediated by TGF-β1 signaling in the vascular endothelium. (Am J Pathol 2023, 193: 1–13; https://doi.org/10.1016/j.ajp.2023.09.014)

Despite major improvements using primary percutaneous intervention (PPCI) to treat patients with acute ST-elevation myocardial infarction (STEMI), progression to heart failure after infarction represents a major clinical problem.1,2 It has been reported that 22% of patients with STEMI treated with PPCI developed heart failure symptoms within 1 year, despite state-of-the-art medical care.3 Detrimental progression is substantially determined by the original infarct size and time to reperfusion. An acute exuberant proinflammatory response can further enhance local cardiac injury, leading over time to adverse ventricular remodeling and gradual loss of cardiac function that can result in heart failure. For patients with STEMI, particularly those with large infarcts, additional intervention in the acute care setting is needed to reduce ischemia-reperfusion injury, protect myocardial tissue, and thereby reduce the risk of progression to heart failure.

The immediate effect of an acute coronary occlusion is cardiomyocyte death due to anoxia. Timely reperfusion is the most effective treatment to save ischemic myocardium.

Supported by British Heart Foundation award PG/18/57/33941 (H.M.A.) and Wellcome Trust Awards 219530 (R.M.M.) and 104111 (R.M.M.)
However, reperfusion itself causes release of damaging reactive oxygen species, whereas necrotic cardiomyocytes release alarmins that activate innate immune cells. Proinflammatory cytokines are up-regulated within injured myocardium, and an enhanced proinflammatory environment in the myocardium leads to further increases in immune cell infiltration associated with increased myocardial cell death.4,5 Therefore, dampening the immediate proinflammatory response after ischemia-reperfusion has the potential to protect the surviving myocardium from further injury.

Transforming growth factor (TGF)-\(\beta\) is an endogenous circulating and tissue-resident protein that has multiple critical roles in regulating the development and maintenance of the cardiovascular system.6 It circulates primarily in a latent form and is stored in a latent form within tissues. It is activated by complex proteolytic mechanisms in response to tissue injury.7 Active TGF-\(\beta\) ligand signals via a tetrameric TGF-\(\beta\) receptor protein complex on the cell surface that activates SMAD2/3 transcription factors to regulate gene expression.8 The pleiotropic properties of TGF-\(\beta\) include being a major driver of anti-inflammatory responses.9-12 In line with this property, mice lacking TGF-\(\beta\), which survive to birth, die in early postnatal life from multifocal inflammatory autoimmune disease.13,14 Furthermore, in a mouse model of atherosclerosis, inhibition of TGF-\(\beta\) signaling promotes development of atherosclerotic lesions with an increased inflammatory component.15 In injured heart tissue, after MI, TGF-\(\beta\) is critical for promoting the transition from an early proinflammatory phase to a later reparative phase of cardiac healing. It drives this transition via a number of mechanisms, including promoting the formation of anti-inflammatory T-regulatory cells, stimulating angiogenesis, and initiating fibrosis.16,17 It has additional anti-inflammatory effects on the vascular endothelium, including reducing expression of E-selectin, required for leukocyte adhesion before extravasation into the injured tissue.17,18 An early trigger of some of these anti-inflammatory properties is expected to be beneficial in dampening an exuberant proinflammatory response immediately after infarction. In line with this hypothesis, using rat and feline models of cardiac ischemia reperfusion, treatment with exogenous TGF-\(\beta\) in the acute care setting (ie, during ischemia and before reperfusion) reduces myocardial injury within the first 24 hours of reperfusion.19,20 However, these studies did not investigate the more important longer-term effects on cardiac outcomes. In this study, the myocardial protective role of exogenous TGF-\(\beta\) delivered in the acute care setting of cardiac ischemia-reperfusion in a mouse model was confirmed. Furthermore, this protection involves an early anti-inflammatory effect and leads to reduced scar size at 4 weeks after the initial injury. Because TGF-\(\beta\) also has robust profibrotic properties21 and therefore is unlikely to gain broad favor as a therapeutic agent, we investigated whether its parasite-derived mimic \textit{Heligmosomoides polygyrus} TGM (HpTGM) has similar protective properties.

HpTGM is one of a number of proteins secreted by the nematode worm \textit{H. polygyrus} to evade immune rejection from the murine gastrointestinal tract. HpTGM has no molecular homology to TGF-\(\beta\) but signals through the same TGF-\(\beta\) receptor complex and, importantly for our study, has greatly reduced profibrotic properties compared with TGF-\(\beta\).22 This work reveals that a single bolus of HpTGM given at the clinically relevant time of coronary artery reperfusion has similar anti-inflammatory protective effects to TGF-\(\beta\), leading to reduced scar size.

Materials and Methods

Patient Study

Patients with STEMI (\(n = 47\)) were from a previously published double-blind randomized controlled trial [Cyclosporin to Reduce Reperfusion Injury in Primary PCI Clinical Trial (CAPRI)]23 with cardiovascular magnetic resonance imaging of heart function and infarct size available at 1 week and 3 months after MI. The study complied with the principles of the Declaration of Helsinki, was approved by the local ethics committee (NCT02390674), and obtained written informed consent from all participants. Patient details are summarized in Supplemental Table S1. Patient blood samples were taken at 15 minutes after reperfusion from the culprit coronary artery and at 24 hours after reperfusion from a peripheral vein. Serum was analyzed using a Luminex-based custom xMAP immunoassay (Bio-Rad Laboratories, Hercules, CA) with TGF-\(\beta\) detection beads.

Mouse Surgery

All animal experiments were performed under the UK Government Animal (Scientific Procedures) Act 1986 and approved by the Newcastle University Animal Welfare and Ethical Review Body and licensed by the Home Office, UK. The study used male mice between 12 and 16 weeks of age that were of the C57BL/6 strain (purchased from Charles River Laboratories, UK). Mice with tamoxifen-induced endothelial-specific depletion of the TGF-\(\beta\) type II receptor [Tgfb2fl/fl; Cdh5(BAC)-Cre-ert2] have been previously described.24 Tamoxifen treatment (2 mg/d) was given to adult mice (aged 10 to 12 weeks) by intraperitoneal injection for 5 consecutive days and 14 days before surgery. Surgery to induce a 60-minute transient occlusion of the left anterior descending (LAD) artery for 60 minutes was performed with the mice under isoflurane anesthesia (3% isoflurane/97% oxygen) as previously described.25,26 Except that presurgical sedative or analgesia was provided by subcutaneous injection of midazolam (5 mg/kg) and fentanyl (0.05 mg/kg). Anesthesia was confirmed at regular intervals by loss of the pedal withdrawal reflex. Sham controls had the same surgery but without coronary artery ligation. All animals entering the study were subject to the same procedures.
exclusion criteria as follows: failure to recover from surgery within 2 hours, small infarct as judged by extent (<30%) of blanched left ventricular cardiac tissue at the time of ligation, no ST elevation observed on ECG during ischemic period, failure of the occluded artery to reperfuse after 60 minutes, and failed injection of drug.

Drug Treatments

A catheter was placed in the tail vein immediately before surgery to enable time-controlled drug delivery. In the first study, recombinant murine TGF-β1 (catalog number 14-8342-82; Thermo Fisher Scientific, Hemel Hempstead, UK) was given using a dose within the range used in previous studies.19,20 This dose was given at 2 time points per mouse at 60 minutes apart; the first dose (33 μg/kg) was given within 1 minute of ligation of the LAD artery and the second dose (also 33 μg/kg) up to 1 minute after reperfusion of the LAD. Control mice had the same surgery but no injection. The second study used a cytokine produced by HpTGM, expressed as a recombinant protein in HEK293T cells and purified using affinity chromatography, as previously described.22 A single bolus of HpTGM or an equivalent volume (approximately 50 μL) of saline was given within 1 minute of reperfusion unless otherwise stated. Of note, the bioactive form of TGF-β1 is a dimer of 25 kDa, whereas HpTGM is a monomer of 49 kDa so twice the total concentration of HpTGM (132 μg/kg) was used. The surgeon was blinded to saline or HpTGM treatment.

Area of Infarct, Density of Infiltrate, and Scar Size

Hearts were harvested at 24 hours after reperfusion, and heart cryosections (10 μm) were processed for immunofluorescent staining as previously described.26,27 All staining analyses were blinded to treatment group. Leukocytes were detected using rat primary antibody anti-CD45 (catalog number 103102; Biolegend, London, UK), with detection using secondary anti-rat antibodies conjugated to Alexa568 fluor. A secondary antibody-only control was used in each case to ensure immunostaining specificity. Immunostaining for leukocytes was used to characterize the density and area of immune cell infiltrate (Supplemental Figure S1).

To evaluate the extent of nonviable myocardial tissue, the heart was harvested 24 hours after reperfusion, briefly cooled, and cut into six to eight slices per heart. The rings were stained in 1% triphenyltetrazolium chloride (TTC) in 0.9% sodium chloride at 37°C for 20 minutes and fixed in 10% buffered formalin at room temperature for 1 hour. ImageJ (NIH) analysis of images (taken using an MZ6 Leica microscope) of the TTC-negative (nonmetabolically active) tissue compared with the total left ventricular myocardium was used to calculate percentage of infarction. To ascertain mature scar size at 4 weeks after reperfusion, 10-μm sections of paraformaldehyde-fixed paraffin-embedded hearts were prepared using a microtome. Subsequently, every 20th section from ligature to apex through the heart (totaling a mean of 17 sections) was stained using Masson’s Trichrome Stain Kit (Merck Life Science UK Ltd, Gillingham, UK) and imaged using an Aperio slide scanner. Scar size was measured using ImageJ software and presented as the percentage of total left ventricle using the method illustrated in Supplemental Figure S2.

Intracardiac Cytokine Expression

Hearts were harvested 24 hours after reperfusion. Left ventricles were dissected, washed in phosphate-buffered saline to remove blood, harvested into RNA Later (Thermo Fisher Scientific), and frozen (−80°C) until required. Tissue was finely minced and RNA extracted using the RNeasy fibrous tissue mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Random hexamers were used to prime cDNA synthesis using the Tetro cDNA synthesis kit (Meridian Bioscience, Cincinnati, OH). Cytokine expression was measured using TaqMan Universal PCR master mix and the following Taqman probes (Thermo Fisher Scientific): IL-1β: Mm00434228_m1; chemokine C-C motif ligand 2 (CCL2, also known as MCP1): Mm00441242_m1; and tumor necrosis factor (TNF)-α: Mm00432528_m1 and Tgfb1 Mm01178820. Taqman probes for housekeeping genes were Mm99999915_g1 for Gapdh and Mm03024075_m1 for Hprt. Gene expression was measured in ischemia-reperfusion hearts from TGF-β1– or HpTGM-treated mice versus naive hearts using the ΔΔCt comparison method.

Cell Culture and Western Blot

Cells were derived from mice of the C57BL/6 background strain carrying the floxed Tgfb2 allele, tamoxifen-inducible Rosa26-CreER T2 transgene, and the temperature-sensitive Immorto gene.28 Mouse coronary endothelial cells (MCECs) were isolated from heart tissue using anti-CD31–conjugated magnetic beads. MCECs were cultured in a similar way to our mouse lung endothelial cell lines29–31 in Promocell MV2 media with 5% serum. To deplete the Tgfb2 allele, cells were treated with 1 μM 4-hydroxytamoxifen for 48 hours to activate Cre-ERT2 and generate Tgfb2 knockout MCECs. Cells were cultured in fresh media in the absence of tamoxifen for at least an additional 48 hours before use. Western blot experiments were performed as previously described30 using mouse anti-pSMAD2 (diluted 1/500; catalog number 3108S; Cell Signaling Technology, Leiden, Germany) detected using anti-mouse IRDye 800CW (catalog number 925-32211; Li-Cor Biosciences, Cambridge, UK) and α-tubulin (diluted 1/2000; catalog number T6199; Merck Life Science UK Ltd, Dorset, UK) detected using anti-mouse IRDye 680RD (catalog number #925-68070; Li-Cor Biosciences). Fluorescent gel blots were imaged using an Odyssey scanner.
Statistical Analysis

In the cohort of patients with STEMI, the primary end point was a change in infarct size at 3 months versus 1 week after PPCI. Spearman correlation analysis was used to determine the association of TGF-β1 levels at 24 hours with change in infarct size during the 3-month study period. Data were analyzed using GraphPad Prism, version 9 (GraphPad Software, San Diego, CA), and differences were considered significant at \(P < 0.05 \). Data were tested for normality using the Shapiro-Wilk test, where sample sizes were sufficient, and used to inform the choice of parametric or non-parametric statistical tests. Normally distributed data are presented as means ± SEM. The two-tailed \(t \)-test or \(U \)-test was used to compare two experimental groups, whereas data from multiple groups were compared using one-way analysis of variance (with Tukey post hoc corrections for multiple comparisons) or Kruskal-Wallis test (with Dunn correction).

Results

Circulating TGF-β1 Levels at 24 Hours After Reperfusion in Patients With STEMI Correlate with Beneficial Reduction in Infarct Size after 3 Months

In light of the previously reported protective role of TGF-β1 after MI in preclinical studies,19,20 and the established role of TGF-β1 in dampening the inflammatory response,9–11 we examined circulating TGF-β1 levels in patients with STEMI. Data from our recent CAPRI trial in which early blood samples and 1 week 3 month magnetic resonance cardiac outcome measures were available were searched.23 This trial was originally designed to detect whether treatment of patients with STEMI with a single bolus of cyclosporin immediately before PPCI reduces the amount of damage to the heart compared with treatment with placebo. We first assessed whether cyclosporin treatment affected serum TGF-β1 levels at the 2 time points tested: 15 minutes and 24 hours after reperfusion. No differences in TGF-β1 levels (Supplemental Table S2) or infarct size23 were observed when comparing patients with STEMI with respect to their treatment with cyclosporin or placebo. Data were therefore pooled for analysis. The median TGF-β1 level was 21,932 pg/mL at 15 minutes after reperfusion and decreased to 6248 pg/mL at 24 hours, a decrease of 3.5-fold (\(P < 0.0001 \)) (Figure 1A). During the subsequent 3 months under standard optimal medical care, the infarct size of these patients with STEMI decreased by a mean of 2.5% (\(P < 0.01 \)) (Figure 1B). Interestingly, circulating TGF-β1 levels at 24 hours correlates with the size of this reduction in infarct size (\(P < 0.01 \); Figure 1C), suggesting TGF-β1 might have beneficial effects.

Exogenous TGF-β1 Reduces Infarct Size and Inflammatory Responses at 24 Hours After Reperfusion

To investigate the effect of TGF-β1 on pathologic changes in heart tissue after myocardial infarction, we used our established surgical mouse model of cardiac ischemia-reperfusion.25,26 It was established that intravenous delivery of recombinant TGF-β1 at the acute phase of ischemia-reperfusion reduced infarct size at 24 hours by 30% (\(P = 0.025 \)), based on cell viability staining with TTC (Figure 2, A and B). This TGF-β1–mediated protection agrees with a previous study using a cat model.19 Cardiac veins are the primary site of leukocyte adhesion and extravasation after reperfusion. We previously found that our mouse model of ischemia-reperfusion leads to significant endothelial cell leukocyte adhesion to the venous endothelium by 2 hours after reperfusion and that there is major leukocyte infiltration of the injured left ventricular tissue by 24 hours.26 Therefore, the effects of increased acute circulating TGF-β1 levels on the intramyocardial inflammatory infiltrate were analyzed at 24 hours after reperfusion using heart tissue immunostained for the pan-leukocyte marker CD45. TGF-β1 treatment led to a significant reduction of 23% (\(P = 0.03 \)) in the area of leukocyte infiltrate compared with untreated ischemic hearts (Figure 2, C and D). This area of infiltrate can also be used as a readout of the injury caused by the infarct (Supplemental Figure S1), in place of the TTC assay. Importantly, the mean density of CD45+ leukocytes within the injured myocardium was also significantly reduced by 28% (\(P = 0.015 \)) in TGF-β1–treated versus untreated mice (Figure 2E). Furthermore, with the use of Ly6G immunostaining to detect neutrophils, there was a significant reduction in neutrophils in the injured hearts of the TGF-β1–treated group compared with controls (Figure 2F), similar to a previous report.19 Moreover, the percentage of intramural leukocytes that are neutrophils is not significantly different between hearts from untreated and TGF-β1–treated animals (Figure 2G). This finding suggests that the reduced infiltrate seen in the TGF-β1–treated hearts is due to a similar reduction of both neutrophils (CD45+Ly6G+; the major leukocyte cell type) and non-neutrophils (CD45+Ly6G−; the minor population). Inflammatory cytokines are known to be released rapidly within the heart after tissue injury. Intracardiac expression of three key proinflammatory mediators, TNF-α, CCL2 (also known as MCP1), and IL-1β, were all significantly up-regulated in the injured left ventricle at 24 hours after reperfusion compared with sham controls (Figure 3). In addition, the expression of CCL2 and IL-1β was reduced by >50% (\(P = 0.004 \) and \(P = 0.038 \), respectively) in the injured left ventricle of TGF-β1–treated compared with untreated mice (Figure 3, A and B). On the other hand, induced expression of TNF-α was relatively modest and was similar in all infarcted hearts (Figure 3C).

Exogenous TGF-β1 Treatment Reduces Mature Scar Size at 4 Weeks After Reperfusion

In our mouse model, transient cardiac ischemia due to ligation of the LAD for 60 minutes followed by reperfusion leads to a mature intramural collagenous scar by 4 weeks.
Masson’s trichrome staining discriminates viable muscle from collagenous scar and was used to measure mature scar size at 4 weeks after infarction. This intramural scar contrasts with the transmural scars that result from permanent LAD occlusion used in many other mouse studies in the literature, including our own. The mean scar size is significantly reduced by 21% in the TGF-β1-treated mice compared with untreated mice ($P = 0.015$; Figure 4B). This finding indicates a longer-term improved outcome and is consistent with the beneficial effects of short-term TGF-β1 treatment on infarct size seen at 24 hours after reperfusion. Delivery of exogenous TGF-β1 polypeptide has an immediate $t_1/2$ of 11 minutes and a terminal $t_1/2$ of 60 minutes. Therefore, most of the ligand will have cleared within 24 hours. Despite these labile properties and the observed benefit of TGF-β1 in reducing scar size, there are still likely to be concerns around the profibrotic properties of exogenously delivered bioactive TGF-β1 that might prevent its consideration as a therapeutic in patients with STEMI. We therefore turned to HpTGM, an immunomodulatory mimic of TGF-β cytokine that is produced by the helminth worm *H. polygyrus*. HpTGM signals through the TGF-β receptor complex (Supplemental Figure S3) and mediates similar anti-inflammatory effects while lacking the robust profibrotic properties of TGF-β1.

Figure 1 Circulating transforming growth factor (TGF)-β1 levels in patients with ST-elevation myocardial infarction (STEMI) at 24 hours after reperfusion positively correlate with a reduction in infarct size over 3 months. **A:** High circulating levels of TGF-β1 at 15 minutes after reperfusion in patients with STEMI decrease by a mean of 2.7-fold by 24 hours. **B:** Infarct size measured by magnetic resonance decreases by a mean of 2.5% between week 1 and 3 months after primary percutaneous intervention in patients with STEMI. **C:** There is a significant inverse correlation between circulating TGF-β1 levels at 24 hours after reperfusion and change in infarct size during the subsequent 3 months. Spearman’s rank correlation coefficient $= -0.42; P = 0.0034$. **P** < 0.01 (Wilcoxon two-tailed matched paired signed rank test); ****P < 0.0001 (Wilcoxon matched paired samples test). %LV, percentage of the left ventricle.
I/R + TGF-β1

Sham

I/R

I/R + TGF-β1

Infarct Size (% LV)

Leukocytes/FOV

% Neutrophils

Injured Area (%LV)

Neutrophils/FOV

% Neutrophils
Exogenous HpTGM Reduces Cardiac Injury at 24 Hours After Reperfusion and Decreases Mature Scar Size

With the use of the same mouse model of 60-minute transient cardiac ischemia, the treatment schedule used above was repeated but with an equivalent dose of HpTGM in place of TGF-β1, that is, one dose via the tail vein immediately before infarction and another dose via the same route immediately after reperfusion. This treatment led to a very similar reduction of leukocyte infiltrate area and density in the heart at 24 hours after reperfusion (Supplemental Figure S4). This finding suggested that HpTGM had anti-inflammatory properties similar to those of TGF-β1. However, any treatment commencing at the initiation of ischemia is unlikely to be translatable to the clinic because this is before the time when most patients with STEMI reach the hospital. Therefore, the effect of a single bolus of HpTGM given intravenously (via the tail vein) immediately (<1 minute) after reperfusion was evaluated to represent a clinically relevant time point for therapeutic delivery. Control animals were subjected to the same cardiac injury and given saline, with the surgeon blinded to treatment. Single-bolus HpTGM given at the time of reperfusion led to reduced cardiac injury (measured using CD45 infiltrate area) of 39% (P = 0.038) and reduced mean leukocyte density by 44% (P < 0.001) compared with saline-treated animals (Figure 5, A and B). HpTGM treatment also led to significantly reduced intracardiac expression of CCL2 (34% reduction; P = 0.0084) and IL-1β (49% reduction; P = 0.0036) compared with saline-treated animals (Figure 5, C and D) in a very similar way to exogenous TGF-β1 treatment. In addition, HpTGM appeared to be more effective than exogenous TGF-β1 in significantly reducing intracardiac expression of TNF-α (30% reduction; P = 0.016) (Figure 5E). Endogenous Tgbfl transcripts are up-regulated 5-fold in the injured heart at 24 hours after transient ischemia, and this is not altered by HpTGM treatment (Figure 5F). Importantly, the single bolus of HpTGM given at the time of reperfusion led to a significant reduction (28%; P = 0.0076) of mature scar size at 4 weeks after reperfusion (Figure 5G). Because the early accrualment of leukocytes in the infarcted heart tissue is mediated via leukocyte extravasation through the postcapillary venules, we postulated that the TGF-β receptor in the vascular endothelium was required for the beneficial effect of HpTGM treatment. To test this, a floxed Tgfb2 mouse carrying a tamoxifen-activated endothelial specific Cre [Cdh5(BAC)-Cre-ert2] that we have previously used in developmental studies was used (Figure 6). In agreement with the hypothesis, the effect of HpTGM on decreasing the size of the injured area and reducing the density of leukocyte infiltrate is completely lost after in vivo deletion of the TGF-β receptor Tgfb2 specifically in endothelial cells. These data suggest this early benefit of delivering intravenous HpTGM in the acute care setting was mediated via reduced leukocyte extravasation through the coronary vasculature.

Discussion

Few clinical studies have examined circulating TGF-β levels in the acute STEMI setting. In stable coronary artery disease, some interesting associations have been observed between low circulating TGF-β levels and poorer outcomes. Furthermore, patients with heart failure with preserved ejection fraction have increased levels of circulating TGF-β1 compared with patients with heart failure with reduced ejection fraction. These findings indicate that increased circulating levels of TGF-β1 might be beneficial in some cardiac patient groups. In the patients with STEMI in this study, higher levels of circulating TGF-β1 at 24 hours after PPCI were significantly associated with improved scar reduction after 3 months, also suggesting TGF-β1 might provide some benefit. A likely explanation of the beneficial effects of increased circulating TGF-β1 relates to its potent anti-inflammatory properties. To initiate improved understanding of possible mechanisms, we turned to a mouse model of transient myocardial ischemia.

Figure 2 Treatment with exogenous transforming growth factor (TGF)-β1 in a mouse model of transient cardiac ischemia reduces infarct size and inflammatory infiltrate 24 hours after reperfusion. A and B: Hearts were subject to 60 minutes of infarction by transient occlusion of the left anterior descending artery followed by reperfusion with or without TGF-β1 treatment (66 μg/kg). Area of infarct as a proportion of the left ventricle (LV) was measured using viable triphenyltetrazolium chloride staining at 24 hours after reperfusion. Infarct area of nonviable myocardium (white) as a proportion of the total LV was significantly reduced in the TGF-β1–treated mice. C: Immunostaining of transverse heart sections with anti-CD45 (pan-leucocyte marker) at 24 hours after reperfusion was used to measure the total area of immune infiltrate (dashed line) expressed as percentage of the LV (%LV). This was then used as a readout of tissue injury, and this area of infiltrate is absent in sham controls. D: TGF-β1 treatment leads to significant reduction of the injured area. Mean values shown for 8 images per biological replicate, taken from transverse heart sections (200 μm apart) from the intramyocardial region of the middle LV. Data analyzed by unpaired 2-tailed t-test (data values in shams were all zero). E: Anti-CD45 staining was used to measure the density of leukocyte accumulation in the injured area at 24 hours after reperfusion using the quantification methods detailed in Supplemental Figure S1. TGF-β1 treatment leads to significantly reduced density of CD45+ leukocytes in the injured area. Leukocytes found within the myocardium of sham hearts correspond to tissue resident leukocytes. F: Anti-Ly6G staining was used to measure the density of myeloid cells in the injured region at 24 hours after reperfusion. TGF-β1 treatment leads to significantly reduced density of Ly6G+ neutrophils in the injured area. G: The mean percentage of leukocytes that are Ly6G+ neutrophils is 26% in sham hearts and increases to 74% in injured hearts. The mean percentage of neutrophils is similar (66%) in injured hearts from TGF-β1–treated animals. Data in D and G were analyzed by one way analysis of variance with Tukey correction. n = 6 to 7 per group (A and B); n = 8 per group (C–G). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Scale bar = 500 μm. FOV, field of view; ns, not significant; RV, right ventricle.

The American Journal of Pathology ■ aip.amjpathol.org

FLA 5.6.0 DTD ■ AJP3981_proof ■ 23 October 2023 ■ 12:05 pm ■ EO: AJP-A-D-23-
Numerous preclinical studies have pointed to the benefit of an anti-inflammatory approach in reducing infarct size. For example, targeting neutrophils directly or targeting IL-1β significantly reduces infarct size. However, translating the benefits of anti-inflammatory therapy after MI to the clinic has proved challenging and led to doubts on the value of these animal studies. However, recent clinical findings have begun to change this perception and refocus energies on understanding the benefits of anti-inflammatory therapy in patients with MI. For example, long-term anti-inflammatory therapy targeting IL-1β in patients with HI with a proinflammatory blood profile [Canakinumab Anti-Inflammatory Thrombosis Outcomes Study] reduces the risk of recurrent cardiovascular events. Furthermore, the Colchicine Cardiovascular Outcomes Trial revealed that early initiation of treatment after MI with the anti-inflammatory drug colchicine was beneficial and is consistent with our findings that early intervention is important to gain effective anti-inflammatory benefit. However, a simple and effective therapy at the time of PPCI to protect the remaining viable myocardium and thereby reduce the risk of progression to heart failure in patients with STEMI remains an unmet clinical need. This goal of dampening exuberant inflammatory responses also has to be reached within the context that some inflammation is beneficial and that timing of the therapeutic intervention is important. For example, early recruitment of myeloid cells to the injured heart tissue is required to...
TGFβ1 and HpTGM Promote Heart Protection

Figure 4 Transforming growth factor (TGF)-β1 treatment reduces scar size at 4 weeks after reperfusion. A: Masson’s trichrome stain was used to discriminate viable muscle (pink) from collagenous scar (blue). Analysis of 17 transverse sections through each heart was used to quantify scar size as percentage of left ventricle (%LV). B: Scar size is significantly reduced in TGF-β1–treated mice compared with control mice subjected to the same cardiac injury of 60-minute transient ischemia. Data were analyzed by unpaired t-test. n = 11 per group. *P < 0.05. Scale bar = 500 μM. LV, left ventricle; RV, right ventricle.

The importance of the vascular endothelium in myocardial ischemic injury and above the culprit occluded vessel(s) is widely recognized. The data indicate that TGF-β signaling in the vascular endothelium is required for mediating the early anti-inflammatory response to exogenous HpTGM treatment. This finding is consistent with the ability of TGF-β1 to reduce vascular endothelial expression of E-selectin, a protein that mediates leukocyte adhesion to the endothelium before extravasation. At 24 hours after reperfusion, neutrophils predominate the inflammatory infiltrate, and TGF-β1 inhibits transmigration of neutrophils through activated vascular endothelial cells. Furthermore, intracardiac CCL2 plays a critical role in recruiting CCR2-expressing monocytes from the circulation, and SMAD3 (a key transcription factor activated by the TGF-β receptor complex) mediates inhibition of CCL2 expression. Our study is unable to discriminate the cell-specific source of the cytokines that are reduced after TGF-β1 or HpTGM treatment. However, their observed effects in reducing the injured area and the numbers of extravasated leukocytes in the myocardium by 24 hours after injury would inevitably have the corollary of reduced levels of leukocyte-expressed cytokines within the infarcted heart tissue. Although our study is limited by the lack of longitudinal cardiac function data, this early anti-inflammatory effect of short-term TGF-β1 or HpTGM treatment is substantial and clearly results in a reduced scar size at 4 weeks, consistent with a longer-term benefit of treatment.

Infarct size has a major impact on adverse cardiac remodeling, with larger infarcts leading over time to left ventricular dilatation, reduced end systolic volume, and increased risk of heart failure. Thus, significant reductions in infarct size, such as reported here, can reduce the risk of progression to heart failure. The significant levels of cardiac

remove dead cell debris. In addition, after extravasation, monocytes differentiate to macrophages that within a few days make a key transition from so-called M1 to M2 macrophage to provide key reparative proangiogenic and profibrotic roles. In agreement with the anti-inflammatory protective effect of exogenous TGF-β1 in the acute care setting, TGF-β antagonists delivered in the acute care setting amplify the inflammatory response. However, the same TGF-β antagonist treatment given later (3 to 7 days after MI) reduces adverse remodeling and proinflammatory roles. In agreement with the anti-inflammatory protective effect of exogenous TGF-β1 in the acute care setting, TGF-β antagonists delivered in the acute care setting amplify the inflammatory response. However, the same TGF-β antagonist treatment given later (3 to 7 days after MI) reduces adverse remodeling and proinflammatory roles. In agreement with the anti-inflammatory protective effect of exogenous TGF-β1 in the acute care setting, TGF-β antagonists delivered in the acute care setting amplify the inflammatory response. However, the same TGF-β antagonist treatment given later (3 to 7 days after MI) reduces adverse remodeling and proinflammatory roles. In agreement with the anti-inflammatory protective effect of exogenous TGF-β1 in the acute care setting, TGF-β antagonists delivered in the acute care setting amplify the inflammatory response. However, the same TGF-β antagonist treatment given later (3 to 7 days after MI) reduces adverse remodeling and proinflammatory roles.
Figure 5 Treatment with exogenous *Heliomosomoides polygyrus* TGM (HpTGM) in a mouse model of myocardial infarction reduces infarct size, inflammatory cytokine expression, and scar size. A: Hearts were subject to 60-minute infarction by transient occlusion of the left anterior descending artery (LAD) followed by reperfusion with or without HpTGM treatment (132 μg/kg). Immunostaining of transverse heart sections with anti-CD45 (pan leukocyte marker) at 24 hours after reperfusion was used to measure the total area of tissue injury. HpTGM treatment leads to a significant reduction in the injured area. Mean values are shown for 24 images per biological replicate. Data were analyzed by unpaired two-tailed t-test. B: Anti-CD45 staining was used to measure the density of leukocyte accumulation in the injured region at 24 hours of reperfusion. HpTGM treatment leads to significantly reduced density of CD45+ immune cells in the injured area. Data were analyzed by unpaired two-tailed t-test. C–F: Quantitative PCR analysis of infarcted (60 minutes) left ventricular heart tissue at 24 hours after reperfusion shows up-regulation of cytokines chemokine (C-C motif) ligand 2 (CCL2), IL-1β, and tumor necrosis factor (TNF)-α in the left ventricle (LV) of ischemia-reperfusion (I/R) hearts from saline-treated mice compared with HpTGM-treated mice. *Tgfβ1* transcript levels were similar in both groups. Gene expression data were normalized to housekeeping genes *Hprt1* and *Gapdh*, and fold change in gene expression was calculated with respect to transcript levels of the target gene in naive hearts. Data were analyzed by unpaired two-tailed t-test. G: Scar size at 4 weeks after reperfusion is significantly reduced in HpTGM-treated mice compared with saline-treated control mice subjected to the same cardiac injury of 60-minute transient ligation of the LAD. Data were analyzed by unpaired t-test. n = 9 to 10 per group (A and B); n = 14 to 16 per group (C–F); n = 13 to 15 per group (G). *P < 0.05, **P < 0.01, ***P < 0.001 ns = not significant. FOV, field of view; %LV, percentage of left ventricle; ns, not significant; RV, right ventricle.
protection by TGF-β1 and its mimic seen here are in stark contrast to our previous efforts to save infarcted myocardium by promoting angiogenesis. Although substantial proangiogenic outcomes in the infarcted mouse heart were generated using cardiosphere-derived cell therapy, these cells failed to deliver long-term benefit in heart function. On the other hand, it is important to consider the preclinical model being used. Models of permanent myocardial ischemia reperfusion (as used in this study) represents a better preclinical model to evaluate therapies for patients with STEMI undergoing PPCI. However, a notable limitation of this study is the use of healthy young mice. To move closer toward the multic morbidities found in patients with MI, the model needs to be further improved by using older mice with atherosclerotic disease, for example, ApoE mice aged >12 months. Furthermore, antplatelet therapy with aspirin and a P2Y12 inhibitor, often in combination with a glycoprotein IIb/IIIa inhibitor, forms part of standard patient care after PPCI. This care reduces the risk of future thrombotic events, but these drugs also have anti-inflammatory properties. Therefore, inclusion of antplatelet drugs should be considered for inclusion in future studies to better align the rodent models with the clinical situation.

TGF-β1 has well-established anti-inflammatory properties, whereas HpTGM is a parasitomimetic with great clinical potential. For example, recent work shows that delivery of HpTGM has a major anti-inflammatory effect in mouse models of colitis or airway inflammation. We show here that exogenous delivery of HpTGM at the time of coronary artery reperfusion dampens the proinflammatory response of coronary endothelial cells and reduces cardiac injury, leading to increased myocardial salvage and reduced scar size with the corollary of improved prospects for long-term cardiac function. These findings strongly support future work to further investigate the protective potential of HpTGM after cardiac infarction.

Acknowledgment

We are grateful to the staff at the Functional Genomics Unit for their excellent support with animal husbandry.

Disclosure Statement

None declared.

Supplemental Data

Supplemental material for this article can be found at http://doi.org/10.1016/j.ajpath.2023.09.014.

References

Redgrave et al

33. Tashiro H, Shimokawa H, Sadamata K, Yamamoto K: Prognostic significance of plasma concentrations of transforming growth factor-