Biomarker helps identify “window of opportunity” for cancer chemotherapy timing

This biomarker may help clinicians combine anti-angiogenesis and anticancer drugs more effectively to boost results, according to a new report in The American Journal of Pathology

Philadelphia, April 9, 2018 – Angiogenesis, the formation of new blood vessels, is essential for tumor growth. A new study reported in The American Journal of Pathology describes a vascular stabilization biomarker that can visualize blood vessel activity, thus optimizing the timing of anticancer therapies including anti-angiogenics.

Combination therapy using angiogenesis inhibitors and anticancer drugs can improve drug delivery into tumor tissues and prolong progression-free survival. “Vascular normalization by angiogenesis inhibitors, such as vascular endothelial growth factor (VEGF) signaling inhibitors, is a promising method for improvement of chemotherapy. However, it is unclear how we can recognize the ‘window of opportunity’ for the tumor vascular normalizing period for effective timing of anticancer drug treatment. Therefore, biomarkers delineating this window are essential,” explained Nobuyuki Takakura, MD, PhD, Professor, Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.

Researchers showed that active proliferating vascular endothelial cells (ECs) in mice could be distinguished from dormant ones. They measured the promoter activity of DNA replication factor partner of Sld5-1 (PSF1; official name GINS1) in ECs using enhanced green fluorescent protein (EGFP) that allows visualization of gene activity as fluorescence.
No EGFP signals were observed in normal adult skin vasculature, which was expected as normal skin ECs are dormant. However, after subcutaneous injection of tumor cells, some ECs in and near the tumor shifted to EGFP-positivity. PSF1 promotor activity was also found to correlate well with tumor cell growth. ECs that were high in EGFP expression were larger and had greater intracellular complexity than cells that were EGFP negative. "Our data showed that PSF1-promotor-EGFP mice may be utilized to visualize proliferating ECs by their EGFP expression," commented Dr. Takakura.

"Experimentation on non-proliferative ECs revealed that these quiet cells strongly expressed VEGFR1 and a cell surface protein CD109. CD109 expression in ECs increased three to five days after injection of bevacizumab into human colorectal adenocarcinoma HT29-bearing mice, coinciding with normalization of tumor vessels. Though on day 5 after bevacizumab injection, functional vessels increased and hypoxic regions significantly decreased, by day 8, hypoxic regions increased again."

These results enabled researchers to successfully distinguish between proangiogenic ECs and quiescent ECs by their PSF1 gene promoter activity, which is associated with DNA replication and rapid proliferation.
of somatic cells. Therefore, CD109 expression in ECs marked normalized or silenced blood vessels in the tumor vasculature.

“Since CD109 is highly expressed in dormant ECs, we suggest it can be used to detect normalized blood vessels, thus allowing identification of the ‘window of opportunity’ for optimal delivery of chemotherapeutics,” remarked Dr. Takakura.

Though angiogenesis therapy is clinically used to suppress tumor growth, unfortunately, monotherapy using anti-angiogenics such as VEGF signaling inhibitors does not effectively suppress tumor growth in patients. Adding an anti-angiogenic drug can boost an anticancer drug’s effectiveness. Basic research indicates that anti-angiogenic therapy allows the blood vessels to return to quiescence and “normalize” so that the anticancer drug can penetrate the tumor more effectively.

---

Notes for editors

Full text of this study is available to credentialed journalists upon request; contact Eileen Leahy at +1 732 238 3628 or ajpmedia@elsevier.com. Journalists wishing to interview the authors should contact Nobuyuki Takakura, MD, PhD, at +81 6879 8316 or ntakaku@biken.osaka-u.ac.jp.

This research was supported by the Japan Agency for Medical Research and Development (AMED) Projects for Technological Development, Research Center Network for Realization of Regenerative Medicine and for Development of Innovative Research on Cancer Therapeutics, Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (A) (15H02545), Grant-in-Aid for Young Scientists (B) (JP20631097) and the Takeda Science Foundation.

About The American Journal of Pathology
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, seeks to publish high-quality, original papers on the cellular and molecular biology of disease. The editors accept manuscripts that advance basic and translational knowledge of the pathogenesis, classification, diagnosis, and mechanisms of disease, without preference for a specific analytic method. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, animal, biological, chemical, and immunological approaches in conjunction with morphology. http://ajp.amjpathol.org

About Elsevier
Elsevier is a global information analytics business that helps institutions and professionals advance healthcare, open science and improve performance for the benefit of humanity. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support and professional education, including ScienceDirect, Scopus, SciVal, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, 38,000 e-book titles and many iconic reference works, including Gray’s Anatomy. Elsevier is part of RELX Group, a global provider
of information and analytics for professionals and business customers across industries.

www.elsevier.com